The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits.

The congenital long-QT syndrome (LQT), an inherited cardiac arrhythmia characterized in part by prolonged ventricular repolarization, has been linked to 5 loci, 4 of which have been shown to harbor genes that encode ion channels. Previously studied LQT-3 mutations of SCN5A (or hH1), the gene that encodes the human Na+ channel alpha-subunit, have been shown to encode voltage-gated Na+ channels that reopen during prolonged depolarization and hence directly contribute to the disease phenotype: delayed repolarization. Here, we report the functional consequences of a novel SCN5A mutation discovered in an extended LQT family. The mutation, a single A-->G base substitution at nucleotide 5519 of the SCN5A cDNA, is expected to cause a nonconservative change from an aspartate to a glycine at position 1790 (D1790G) of the SCN5A gene product. We investigated ion channel activity in human embryonic kidney (HEK 293) cells transiently transfected with wild-type ( hH1) or mutant (D1790G) cDNA alone or in combination with cDNA encoding the human Na+ channel beta1-subunit (hbeta1) using whole-cell patch-clamp procedures. Heteromeric channels formed by coexpression of alpha- and beta1-subunits are affected: steady-state inactivation is shifted by -16 mV, but there is no D1790G-induced sustained inward current. This effect is independent of the beta1-subunit isoform. We find no significant effect of D1790G on the biophysical properties of monomeric alpha- ( hH1) channels. We conclude that the effects of the novel LQT-3 mutation on inactivation of heteromeric channels are due to D1790G-induced changes in alpha- and beta1-interactions.[1]

References

  1. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. An, R.H., Wang, X.L., Kerem, B., Benhorin, J., Medina, A., Goldmit, M., Kass, R.S. Circ. Res. (1998) [Pubmed]
 
WikiGenes - Universities