The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Long QT Syndrome

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Long QT Syndrome


Psychiatry related information on Long QT Syndrome


High impact information on Long QT Syndrome

  • METHODS: We determined the genotypes of 541 of 1378 members of 38 families enrolled in the International Long-QT Syndrome Registry: 112 had mutations at the LQT1 locus, 72 had mutations at the LQT2 locus, and 62 had mutations at the LQT3 locus [7].
  • Because KVLQT1 mutations cause arrhythmia susceptibility in the long QT syndrome (LQT), we hypothesized that mutations in KCNE1 also cause this disorder [8].
  • Recombinants allowed us to map the JLN gene between D11S922 and D11S4146, to a 6-cM interval where KVLQT1, a potassium channel gene causing Romano-Ward (RW) syndrome, the dominant form of long QT syndrome, has been previously localized [9].
  • Images in clinical medicine. Congenital long-QT syndrome [10].
  • Deletion of amino-acid residues 1505-1507 (KPQ) in the cardiac SCN5A Na(+) channel causes autosomal dominant prolongation of the electrocardiographic QT interval (long-QT syndrome type 3 or LQT3) [11].

Chemical compound and disease context of Long QT Syndrome


Biological context of Long QT Syndrome


Anatomical context of Long QT Syndrome


Gene context of Long QT Syndrome

  • RESULTS: We identified KCNQ1, which is mutated in cardiac long QT syndrome, as a K+ channel located in tubulovesicles and apical membrane of parietal cells, where it colocalized with H+/K+-adenosine triphosphatase [27].
  • Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online [28].
  • CONCLUSION: The data suggest that mutations in KCND2 and KCND3 are not a frequent cause of long QT syndrome [29].
  • BACKGROUND: Mutations in KCNE2 have been linked to long-QT syndrome (LQT6), yet KCNE2 protein expression in the ventricle and its functional role in native channels are not clear [30].
  • Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects [31].

Analytical, diagnostic and therapeutic context of Long QT Syndrome


  1. Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Jiang, C., Atkinson, D., Towbin, J.A., Splawski, I., Lehmann, M.H., Li, H., Timothy, K., Taggart, R.T., Schwartz, P.J., Vincent, G.M. Nat. Genet. (1994) [Pubmed]
  2. Molecular diagnosis in a child with sudden infant death syndrome. Schwartz, P.J., Priori, S.G., Bloise, R., Napolitano, C., Ronchetti, E., Piccinini, A., Goj, C., Breithardt, G., Schulze-Bahr, E., Wedekind, H., Nastoli, J. Lancet (2001) [Pubmed]
  3. Predicting drug-hERG channel interactions that cause acquired long QT syndrome. Sanguinetti, M.C., Mitcheson, J.S. Trends Pharmacol. Sci. (2005) [Pubmed]
  4. Cardiac Na(+) channel dysfunction in Brugada syndrome is aggravated by beta(1)-subunit. Makita, N., Shirai, N., Wang, D.W., Sasaki, K., George, A.L., Kanno, M., Kitabatake, A. Circulation (2000) [Pubmed]
  5. Consistent linkage of the long-QT syndrome to the Harvey ras-1 locus on chromosome 11. Keating, M., Dunn, C., Atkinson, D., Timothy, K., Vincent, G.M., Leppert, M. Am. J. Hum. Genet. (1991) [Pubmed]
  6. Regulation of HERG potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Thomas, D., Zhang, W., Wu, K., Wimmer, A.B., Gut, B., Wendt-Nordahl, G., Kathöfer, S., Kreye, V.A., Katus, H.A., Schoels, W., Kiehn, J., Karle, C.A. Cardiovasc. Res. (2003) [Pubmed]
  7. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. Zareba, W., Moss, A.J., Schwartz, P.J., Vincent, G.M., Robinson, J.L., Priori, S.G., Benhorin, J., Locati, E.H., Towbin, J.A., Keating, M.T., Lehmann, M.H., Hall, W.J. N. Engl. J. Med. (1998) [Pubmed]
  8. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C., Keating, M.T. Nat. Genet. (1997) [Pubmed]
  9. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Neyroud, N., Tesson, F., Denjoy, I., Leibovici, M., Donger, C., Barhanin, J., Fauré, S., Gary, F., Coumel, P., Petit, C., Schwartz, K., Guicheney, P. Nat. Genet. (1997) [Pubmed]
  10. Images in clinical medicine. Congenital long-QT syndrome. Benhorin, J., Medina, A. N. Engl. J. Med. (1997) [Pubmed]
  11. Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., Smits, J.F., Flameng, W., Clancy, C.E., Moons, L., Vos, M.A., Dewerchin, M., Benndorf, K., Collen, D., Carmeliet, E., Carmeliet, P. Nat. Med. (2001) [Pubmed]
  12. Long QT syndrome, Brugada syndrome, and conduction system disease are linked to a single sodium channel mutation. Grant, A.O., Carboni, M.P., Neplioueva, V., Starmer, C.F., Memmi, M., Napolitano, C., Priori, S. J. Clin. Invest. (2002) [Pubmed]
  13. Primidone in the treatment of the long QT syndrome: QT shortening and ventricular arrhythmia suppression. DeSilvey, D.L., Moss, A.J. Ann. Intern. Med. (1980) [Pubmed]
  14. Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Shimizu, W., Antzelevitch, C. Circulation (1997) [Pubmed]
  15. Early afterdepolarizations induced by isoproterenol in patients with congenital long QT syndrome. Shimizu, W., Ohe, T., Kurita, T., Takaki, H., Aihara, N., Kamakura, S., Matsuhisa, M., Shimomura, K. Circulation (1991) [Pubmed]
  16. Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Rubart, M., Pressler, M.L., Pride, H.P., Zipes, D.P. Circulation (1993) [Pubmed]
  17. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Donger, C., Denjoy, I., Berthet, M., Neyroud, N., Cruaud, C., Bennaceur, M., Chivoret, G., Schwartz, K., Coumel, P., Guicheney, P. Circulation (1997) [Pubmed]
  18. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Mohler, P.J., Splawski, I., Napolitano, C., Bottelli, G., Sharpe, L., Timothy, K., Priori, S.G., Keating, M.T., Bennett, V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  19. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. Yang, W.P., Levesque, P.C., Little, W.A., Conder, M.L., Ramakrishnan, P., Neubauer, M.G., Blanar, M.A. J. Biol. Chem. (1998) [Pubmed]
  20. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. Shimizu, W., Ohe, T., Kurita, T., Kawade, M., Arakaki, Y., Aihara, N., Kamakura, S., Kamiya, T., Shimomura, K. J. Am. Coll. Cardiol. (1995) [Pubmed]
  21. Molecular genetics of the long QT syndrome: two novel mutations of the KVLQT1 gene and phenotypic expression of the mutant gene in a large kindred. Saarinen, K., Swan, H., Kainulainen, K., Toivonen, L., Viitasalo, M., Kontula, K. Hum. Mutat. (1998) [Pubmed]
  22. Identification of two nervous system-specific members of the erg potassium channel gene family. Shi, W., Wymore, R.S., Wang, H.S., Pan, Z., Cohen, I.S., McKinnon, D., Dixon, J.E. J. Neurosci. (1997) [Pubmed]
  23. A cellular model for long QT syndrome. Trapping of heteromultimeric complexes consisting of truncated Kv1.1 potassium channel polypeptides and native Kv1.4 and Kv1.5 channels in the endoplasmic reticulum. Folco, E., Mathur, R., Mori, Y., Buckett, P., Koren, G. J. Biol. Chem. (1997) [Pubmed]
  24. Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. Swan, H., Viitasalo, M., Piippo, K., Laitinen, P., Kontula, K., Toivonen, L. J. Am. Coll. Cardiol. (1999) [Pubmed]
  25. Specific serine proteases selectively damage KCNH2 (hERG1) potassium channels and I(Kr). Rajamani, S., Anderson, C.L., Valdivia, C.R., Eckhardt, L.L., Foell, J.D., Robertson, G.A., Kamp, T.J., Makielski, J.C., Anson, B.D., January, C.T. Am. J. Physiol. Heart Circ. Physiol. (2006) [Pubmed]
  26. Clinical characteristics and results of electrophysiologic testing in young adults with ventricular tachycardia or ventricular fibrillation. Morady, F., Scheinman, M.M., Hess, D.S., Chen, R., Stanger, P. Am. Heart J. (1983) [Pubmed]
  27. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Grahammer, F., Herling, A.W., Lang, H.J., Schmitt-Gräff, A., Wittekindt, O.H., Nitschke, R., Bleich, M., Barhanin, J., Warth, R. Gastroenterology (2001) [Pubmed]
  28. Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online. Benhorin, J., Goldmit, M., MacCluer, J.W., Blangero, J., Goffen, R., Leibovitch, A., Rahat, A., Wang, Q., Medina, A., Towbin, J., Kerem, B. Hum. Mutat. (1998) [Pubmed]
  29. Mutations in the genes KCND2 and KCND3 encoding the ion channels Kv4.2 and Kv4.3, conducting the cardiac fast transient outward current (ITO,f), are not a frequent cause of long QT syndrome. Frank-Hansen, R., Larsen, L.A., Andersen, P., Jespersgaard, C., Christiansen, M. Clin. Chim. Acta (2005) [Pubmed]
  30. KCNE2 protein is expressed in ventricles of different species, and changes in its expression contribute to electrical remodeling in diseased hearts. Jiang, M., Zhang, M., Tang, D.G., Clemo, H.F., Liu, J., Holwitt, D., Kasirajan, V., Pond, A.L., Wettwer, E., Tseng, G.N. Circulation (2004) [Pubmed]
  31. Targeted mutational analysis of ankyrin-B in 541 consecutive, unrelated patients referred for long QT syndrome genetic testing and 200 healthy subjects. Sherman, J., Tester, D.J., Ackerman, M.J. Heart rhythm : the official journal of the Heart Rhythm Society. (2005) [Pubmed]
  32. Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M., Washizuka, T., Aizawa, Y., Nakamura, K., Ohe, T., Aiba, T., Miyamoto, Y., Yoshimasa, Y., Towbin, J.A., Priori, S.G., Kamakura, S. J. Am. Coll. Cardiol. (2004) [Pubmed]
  33. Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Roden, D.M., Woosley, R.L., Primm, R.K. Am. Heart J. (1986) [Pubmed]
  34. Novel therapeutics for treatment of long-QT syndrome and torsade de pointes. Khan, I.A., Gowda, R.M. International journal of cardiology. (2004) [Pubmed]
  35. Genetic testing for risk stratification in hypertrophic cardiomyopathy and long QT syndrome: fact or fiction? Ackerman, M.J. Curr. Opin. Cardiol. (2005) [Pubmed]
  36. Prevention of class III-induced proarrhythmias by flecainide in an animal model of the acquired long QT syndrome. Hallman, K., Carlsson, L. Pharmacol. Toxicol. (1995) [Pubmed]
WikiGenes - Universities