The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of insulin on farnesyltransferase. Specificity of insulin action and potentiation of nuclear effects of insulin-like growth factor-1, epidermal growth factor, and platelet-derived growth factor.

We have previously demonstrated that insulin activates farnesyltransferase (FTase) and augments the amounts of farnesylated p21 (Goalstone, M. L., and Draznin, B. (1996) J. Biol. Chem. 271, 27585-27589). We postulated that this aspect of insulin action might explain the "priming effect" of insulin on the cellular response to other growth factors. In the present study, we show the specificity of the effect of insulin on FTase. Insulin, but not insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), or platelet-derived growth factor (PDGF), stimulated the phosphorylation of the alpha-subunit of FTase and the amounts of farnesylated p21. Even though all four growth factors utilized the Ras pathway to stimulate DNA synthesis, only insulin used this pathway to influence FTase. Insulin failed to stimulate FTase in cells expressing the chimeric insulin/IGF-1 receptor and in cells derived from the insulin receptor knock-out animals. Insulin potentiated the effects of IGF-1, EGF, and PDGF on DNA synthesis in cells expressing the wild type insulin receptor, but this potentiation was inhibited in the presence of the FTase inhibitor, alpha-hydroxyfarnesylphosphonic acid. We conclude that the effect of insulin on FTase is specific, requires the presence of an intact insulin receptor, and serves as a conduit for the "priming" influence of insulin on the nuclear effects of other growth factors.[1]

References

 
WikiGenes - Universities