The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Identification of peptides, selected by phage display technology, that inhibit von Willebrand factor binding to collagen.

A repeated selection of phages from a cyclic hexapeptide phage display library resulted in an enrichment of phages that bound to the monoclonal antibody (MoAb) 82D6A3 (an anti- von Willebrand Factor [ vWF] antibody that inhibits binding of vWF to collagen). Two clones were selected that bound both to MoAb 82D6A3 and to rat tail collagen type I in a specific and dose-dependent manner. The two phage clones were further used in a two-direction competition experiment with vWF. vWF was able to displace phages from collagen in a dose-dependent manner with an IC50 of 35 micrograms/mL and phages were able to inhibit vWF binding to collagen. With the use of specific primers, the sequence of the cysteine-flanked hexapeptide inserts could be deduced. The two phage clones carried an almost identical sequence, CVWLWEQC and CVWLWENC, with a substitution of an N for a Q at position 6 of the hexapeptide. Sequence comparison with the known vWF sequence showed the presence of a comparable sequence at position 1129-1136 (VWTLPDQC), located between the collagen-binding A3-domain and the D4-domain. The two cyclic peptides, the putative corresponding vWF peptide, and a peptide with a scrambled cyclic sequence were synthesized. The two cyclic peptides inhibited vWF binding to rat tail collagen type I in a dose-dependent manner, whereas the linear vWF peptide and the scrambled cyclic peptide were inactive. For half maximal inhibition, 100 +/- 12.7 micromol/L and 34.8 +/- 8.59 micromol/L (mean +/- SEM, n = 3) of the N- and the Q-peptide, respectively, were needed. The two cyclic peptides were also able to inhibit vWF binding to calfskin and human collagen type I, but effective concentrations were some 5 to 10 times higher.[1]

References

 
WikiGenes - Universities