The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Bacteriophages

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bacteriophages

 

Psychiatry related information on Bacteriophages

 

High impact information on Bacteriophages

  • Our AAV/phage (AAVP) prototype targets an integrin [8].
  • Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome [9].
  • Three structures are described for bacteriophage T4 DNA-adenine methyltransferase (T4Dam) in ternary complexes with partially and fully specific DNA and a methyl-donor analog [10].
  • The structures of phage T7 RNA polymerase in an elongation phase substrate complex that includes the incoming nucleoside triphosphate and a pretranslocation product complex that includes the product pyrophosphate (PPi) are described here [11].
  • The phage Mu transpososome is assembled by interactions of transposase subunits with the left (L) and right (R) ends of Mu and an enhancer (E) located in between [12].
 

Chemical compound and disease context of Bacteriophages

 

Biological context of Bacteriophages

  • We have studied the synthesis and stability of cII protein with two experimental systems, phage infection and a cII-producing plasmid [18].
  • The efficiency of methyl-directed DNA mismatch-repair of E. coli acting in vivo on heteroduplex genomes of phage M13 was found to be strongly dependent on the nature of the base/base mismatch to be corrected [19].
  • We have isolated six individual phages from a mouse genomic library on the basis of their DNA homology to Krüppel finger-coding probes, and describe here the DNA sequence and expression of two such clones containing finger-like structures [20].
  • We have asked whether the transposase activity of bacteriophage Mu (the Mu A protein) is stable and capable of catalyzing multiple rounds of coupled replication/integration, or whether its continued synthesis is required to maintain Mu DNA replication [21].
  • Two domains for splicing in the intron of the phage T4 thymidylate synthase (td) gene established by nondirected mutagenesis [22].
 

Anatomical context of Bacteriophages

  • In particular, we obtained a large number of phage recombinants bearing the chorion gene sequence from the silkmoth library and several independent clones of beta-globin genes from the rabbit library [23].
  • DR1 molecules purified from human lymphoblastoid cell lines could specifically bind to these peptide sequences expressed on the phage surface [24].
  • To gain insight into the mechanism and limitations of antibody affinity maturation leading to memory B cell formation, we generated a phage display library of random mutants at heavy chain variable (V) complementarity determining region 2 positions 58 and 59 of an anti-p-azophenylarsonate (Ars) Fab [25].
  • The immunodominant CD4 T cell epitope of the bacteriophage lambda cI repressor protein in several inbred mouse strains can be represented by a peptide encompassing amino acids 12-26 [26].
  • SC1 has been purified by immunoaffinity techniques, and SC1 cDNA clones have been obtained by screening an E4 chick embryo phage expression library with a rabbit polyclonal antibody produced against purified SC1 [27].
 

Gene context of Bacteriophages

 

Analytical, diagnostic and therapeutic context of Bacteriophages

References

  1. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Lohman, T.M., Ferrari, M.E. Annu. Rev. Biochem. (1994) [Pubmed]
  2. An outbreak of multidrug-resistant, quinolone-resistant Salmonella enterica serotype typhimurium DT104. Mølbak, K., Baggesen, D.L., Aarestrup, F.M., Ebbesen, J.M., Engberg, J., Frydendahl, K., Gerner-Smidt, P., Petersen, A.M., Wegener, H.C. N. Engl. J. Med. (1999) [Pubmed]
  3. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1. Goodrich-Blair, H., Scarlato, V., Gott, J.M., Xu, M.Q., Shub, D.A. Cell (1990) [Pubmed]
  4. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Kahmann, R., Rudt, F., Koch, C., Mertens, G. Cell (1985) [Pubmed]
  5. DNA cloning in Streptomyces: a bifunctional replicon comprising pBR322 inserted into a Streptomyces phage. Suarez, J.E., Chater, K.F. Nature (1980) [Pubmed]
  6. Production and characterization of a human monoclonal anti-idiotype to anti-ribosomal P antibodies. Zhang, W., Reichlin, M. Clin. Immunol. (2005) [Pubmed]
  7. Selection of D-amino-acid peptides that bind to Alzheimer's disease amyloid peptide abeta1-42 by mirror image phage display. Wiesehan, K., Buder, K., Linke, R.P., Patt, S., Stoldt, M., Unger, E., Schmitt, B., Bucci, E., Willbold, D. Chembiochem (2003) [Pubmed]
  8. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Hajitou, A., Trepel, M., Lilley, C.E., Soghomonyan, S., Alauddin, M.M., Marini, F.C., Restel, B.H., Ozawa, M.G., Moya, C.A., Rangel, R., Sun, Y., Zaoui, K., Schmidt, M., von Kalle, C., Weitzman, M.D., Gelovani, J.G., Pasqualini, R., Arap, W. Cell (2006) [Pubmed]
  9. Eukaryotic/archaeal primase and MCM proteins encoded in a bacteriophage genome. McGeoch, A.T., Bell, S.D. Cell (2005) [Pubmed]
  10. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Horton, J.R., Liebert, K., Hattman, S., Jeltsch, A., Cheng, X. Cell (2005) [Pubmed]
  11. The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Yin, Y.W., Steitz, T.A. Cell (2004) [Pubmed]
  12. Path of DNA within the Mu transpososome. Transposase interactions bridging two Mu ends and the enhancer trap five DNA supercoils. Pathania, S., Jayaram, M., Harshey, R.M. Cell (2002) [Pubmed]
  13. Circular DNA is excised by immunoglobulin class switch recombination. Iwasato, T., Shimizu, A., Honjo, T., Yamagishi, H. Cell (1990) [Pubmed]
  14. Bacteriophage T4 Alc protein: a transcription termination factor sensing local modification of DNA. Kashlev, M., Nudler, E., Goldfarb, A., White, T., Kutter, E. Cell (1993) [Pubmed]
  15. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W., Tainer, J.A. Cell (1995) [Pubmed]
  16. A role for a small stable RNA in modulating the activity of DNA-binding proteins. Retallack, D.M., Friedman, D.I. Cell (1995) [Pubmed]
  17. Exogenous reinfection with tuberculosis in a shelter for the homeless. Nardell, E., McInnis, B., Thomas, B., Weidhaas, S. N. Engl. J. Med. (1986) [Pubmed]
  18. Control of phage lambda development by stability and synthesis of cII protein: role of the viral cIII and host hflA, himA and himD genes. Hoyt, M.A., Knight, D.M., Das, A., Miller, H.I., Echols, H. Cell (1982) [Pubmed]
  19. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Kramer, B., Kramer, W., Fritz, H.J. Cell (1984) [Pubmed]
  20. A multigene family encoding several "finger" structures is present and differentially active in mammalian genomes. Chowdhury, K., Deutsch, U., Gruss, P. Cell (1987) [Pubmed]
  21. Instability of transposase activity: evidence from bacteriophage mu DNA replication. Pato, M.L., Reich, C. Cell (1982) [Pubmed]
  22. Two domains for splicing in the intron of the phage T4 thymidylate synthase (td) gene established by nondirected mutagenesis. Hall, D.H., Povinelli, C.M., Ehrenman, K., Pedersen-Lane, J., Chu, F., Belfort, M. Cell (1987) [Pubmed]
  23. The isolation of structural genes from libraries of eucaryotic DNA. Maniatis, T., Hardison, R.C., Lacy, E., Lauer, J., O'Connell, C., Quon, D., Sim, G.K., Efstratiadis, A. Cell (1978) [Pubmed]
  24. Identification of a motif for HLA-DR1 binding peptides using M13 display libraries. Hammer, J., Takacs, B., Sinigaglia, F. J. Exp. Med. (1992) [Pubmed]
  25. Random mutagenesis of two complementarity determining region amino acids yields an unexpectedly high frequency of antibodies with increased affinity for both cognate antigen and autoantigen. Casson, L.P., Manser, T. J. Exp. Med. (1995) [Pubmed]
  26. Regulation of the immune response to peptide antigens: differential induction of immediate-type hypersensitivity and T cell proliferation due to changes in either peptide structure or major histocompatibility complex haplotype. Soloway, P., Fish, S., Passmore, H., Gefter, M., Coffee, R., Manser, T. J. Exp. Med. (1991) [Pubmed]
  27. Molecular cloning and expression of a novel adhesion molecule, SC1. Tanaka, H., Matsui, T., Agata, A., Tomura, M., Kubota, I., McFarland, K.C., Kohr, B., Lee, A., Phillips, H.S., Shelton, D.L. Neuron (1991) [Pubmed]
  28. Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Maniatis, T., Ptashne, M., Backman, K., Kield, D., Flashman, S., Jeffrey, A., Maurer, R. Cell (1975) [Pubmed]
  29. Growth-rate-dependent regulation of ribosome synthesis in E. coli: expression of the lacZ and galK genes fused to ribosomal promoters. Miura, A., Krueger, J.H., Itoh, S., de Boer, H.A., Nomura, M. Cell (1981) [Pubmed]
  30. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Hickman, A.B., Waninger, S., Scocca, J.J., Dyda, F. Cell (1997) [Pubmed]
  31. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Mueser, T.C., Nossal, N.G., Hyde, C.C. Cell (1996) [Pubmed]
  32. Nucleotide sequence of cro, cII and part of the O gene in phage lambda DNA. Schwarz, E., Scherer, G., Hobom, G., Kössel, H. Nature (1978) [Pubmed]
  33. Engineering a regulatable enzyme for homogeneous immunoassays. Legendre, D., Soumillion, P., Fastrez, J. Nat. Biotechnol. (1999) [Pubmed]
  34. Mutagenesis of conserved lysine residues in bacteriophage T5 5'-3' exonuclease suggests separate mechanisms of endo-and exonucleolytic cleavage. Garforth, S.J., Ceska, T.A., Suck, D., Sayers, J.R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  35. Strand-specific break near the origin of bacteriophage P2 DNA replication. Chattoraj, D.K. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  36. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor. Hecht, M.H., Sturtevant, J.M., Sauer, R.T. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
 
WikiGenes - Universities