Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene.
Phylogenetic relationships among the Japanese papilionid butterflies were analyzed by comparing 783 nucleotide sequences of the mitochondrial gene encoding NADH dehydrogenase subunit 5 ( ND5). Phylogenetic trees of the representative species from each family in the superfamily Papilionoidea revealed that the species of the family Papilionidae and those of all other families formed distinct clusters, with a few species of the family Hesperiidae (Hesperioidea) as an outgroup. In the phylogenetic trees of most Japanese species of the family Papilionidae with Nymphalis xanthomelas (Nymphalidae) as an outgroup, the tribe Parnassiini (Parnassiinae) formed a cluster, and the rest formed the other cluster in which the tribe Zerynthiini (Parnassiinae) and the subfamily Papilioninae formed different subclusters. In the Papilioninae cluster, the tribes Troidini and Graphiini formed a subcluster, and the tribe Papilionini formed the other subcluster. These results generally agree with the traditional classification of the papilionid butterflies based on their morphological characteristics and support the proposed evolutionary genealogy of the butterflies based on their morphology, behavior, and larval host plants, except that the tribes Parnasiini and Zerynthiini (both Parnassiinae) are not in the same cluster.[1]References
- Phylogeny of Japanese papilionid butterflies inferred from nucleotide sequences of the mitochondrial ND5 gene. Yagi, T., Sasaki, G., Takebe, H. J. Mol. Evol. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg