The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.

Signal transduction through the Rho family GTPases requires regulated cycling of the GTPases between the active GTP-bound state and the inactive GDP-bound state. Rho family members containing an arginine residue at position 186 in the C-terminal polybasic region were found to possess a self-stimulatory GTPase-activating protein (GAP) activity through homophilic interaction, resulting in significantly enhanced intrinsic GTPase activities. This arginine residue functions effectively as an "arginine finger" in the GTPase activating reaction to confer the catalytic GAP activity but is not essential for the homophilic binding interactions of Rho family proteins. The arginine 186-mediated negative regulation seems to be absent from Cdc42, a Rho family member important for cell-division cycle regulation, of lower eukaryotes, yet appears to be a part of the turn-off machinery of Cdc42 from higher eukaryotes. Introduction of the arginine 186 mutation into S. cerevisiae CDC42 led to phenotypes consistent with down-regulated CDC42 function. Thus, specific Rho family GTPases may utilize a built-in arginine finger, in addition to RhoGAPs, for negative regulation.[1]

References

  1. A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. Zhang, B., Zhang, Y., Collins, C.C., Johnson, D.I., Zheng, Y. J. Biol. Chem. (1999) [Pubmed]
 
WikiGenes - Universities