A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases.
Signal transduction through the Rho family GTPases requires regulated cycling of the GTPases between the active GTP-bound state and the inactive GDP-bound state. Rho family members containing an arginine residue at position 186 in the C-terminal polybasic region were found to possess a self-stimulatory GTPase-activating protein (GAP) activity through homophilic interaction, resulting in significantly enhanced intrinsic GTPase activities. This arginine residue functions effectively as an "arginine finger" in the GTPase activating reaction to confer the catalytic GAP activity but is not essential for the homophilic binding interactions of Rho family proteins. The arginine 186-mediated negative regulation seems to be absent from Cdc42, a Rho family member important for cell-division cycle regulation, of lower eukaryotes, yet appears to be a part of the turn-off machinery of Cdc42 from higher eukaryotes. Introduction of the arginine 186 mutation into S. cerevisiae CDC42 led to phenotypes consistent with down-regulated CDC42 function. Thus, specific Rho family GTPases may utilize a built-in arginine finger, in addition to RhoGAPs, for negative regulation.[1]References
- A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. Zhang, B., Zhang, Y., Collins, C.C., Johnson, D.I., Zheng, Y. J. Biol. Chem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg