The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase.

DNA methyltransferases flip their target base out of the DNA helix. Here, we have investigated base flipping by wild-type EcoRV DNA methyltransferase (M.EcoRV) and five M.EcoRV variants (D193A, Y196A, S229A, W231R and Y258A). These variants bind to DNA and S-adenosylmethionine but have a severely reduced catalytic efficiency or are catalytically inactive. To measure base flipping three different assays were used, viz. analysis of the yields of photocrosslinking reactions between the enzymes and a substrate in which the target base is replaced by 5-iodouracil, analysis of the binding constants to substrates containing a mismatch base-pair at the target position and analysis of the salt dependence of specific complex formation. Our data show that the Y196A, W231R and Y258A variants are not able to stabilize a flipped target base, suggesting that the aromatic amino acid residues (Tyr196, Trp231 and Tyr258) are involved in hydrophobic interactions with the flipped base. The D193A variant behaves like wild-type M.EcoRV with respect to base flipping. The fact that this variant is catalytically inactive indicates that Asp193 has a function in chemical catalysis. The S229A variant can better flip modified bases but does not tightly lock the flipped base into the adenine-binding pocket, suggesting that Ser229 could form a contact to the flipped adenine.[1]

References

  1. Mutational analysis of target base flipping by the EcoRV adenine-N6 DNA methyltransferase. Jeltsch, A., Roth, M., Friedrich, T. J. Mol. Biol. (1999) [Pubmed]
 
WikiGenes - Universities