The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Poly(ADP-ribose) polymerase interacts with novel Drosophila ribosomal proteins, L22 and l23a, with unique histone-like amino-terminal extensions.

Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that recognizes and binds to the nicks and ends of DNA, and catalyses successive ADP-ribosylation reactions. To clarify the function of PARP at the molecular level, we searched proteins which interact with PARP. In the auto-modification domain of PARP in Drosophila, there is a putative leucine-zipper motif which can interact with other protein molecules. To find interacting proteins we examined the auto-modification domain of Drosophila PARP, using the Far-Western screening method. From six independent cDNA clones isolated, we characterized two clones, PBP-3 and PBP-12. The predicted amino acid sequences from 109 to 269 of PBP-3 and from 184 to 312 of PBP-12 had more than 62% identities to mammalian L23a (rpl23a) and L22 (rpl22), the ribosomal proteins of the large subunit. This indicated that PBP-3 and PBP-12 are Drosophila homologues of L23a and L22, respectively. These Drosophila ribosomal protein L22 and L23a have additional Ala-, Lys- and Pro-rich sequences at the amino terminus, which have a resemblance to the carboxy-terminal portion of histone H1. Thus, Drosophila L22 and L23a might have two functions, namely the role of DNA-binding similar to histone H1 and the role of organizing the ribosome.[1]


WikiGenes - Universities