The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

His1:CG31617  -  CG31617 gene product from transcript...

Drosophila melanogaster

Synonyms: CG31617, Dmel\CG31617
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of His1:CG31617

  • However, in An. stephensi rpS6 the extension was approximately 70 amino acids longer than that in Ae. albopictus, and at the nucleotide level, it most closely resembled histone H1 proteins from the unicellular eukaryotes Leishmania and Chlamydomonas, and the bacterium Bordetella pertussis [1].
 

High impact information on His1:CG31617

 

Biological context of His1:CG31617

 

Anatomical context of His1:CG31617

 

Associations of His1:CG31617 with chemical compounds

 

Physical interactions of His1:CG31617

 

Regulatory relationships of His1:CG31617

  • These results suggest that ASH2 maintains active transcription by binding a producer of nuclear phosphoinositides and downregulating histone H1 hyperphosphorylation [20].
  • The Drosophila don juan (dj) gene encodes a basic protein that is expressed solely in the male germline and shows structural similarities to the linker histone H1 [21].
 

Other interactions of His1:CG31617

  • We also show that histone H1 hyperphosphorylation is dramatically increased in both ash2 and sktl mutant polytene chromosomes [20].
  • Our results argue against a proposal of a shared role of HMGD and histone H1 in Drosophila chromatin [22].
  • Hence, the mechanism of transcriptional repression by p300 is distinct from that of histone H1, PARP-1 or Sir2 [23].
  • Regular spacing of nucleosomes with or without histone H1 is sufficient to maximally repress transcription from hsp70 and fushi tarazu gene promoters [24].
  • Moreover, we found that each of the individual core histones, but not histone H1 or high mobility group protein 1, bound to the knirps enhancer to give a repetitive DNase I footprint pattern with a periodicity of about 10 base pairs, which is approximately one turn of the DNA helix [25].
 

Analytical, diagnostic and therapeutic context of His1:CG31617

References

  1. The histone-like C-terminal extension in ribosomal protein S6 in Aedes and Anopheles mosquitoes is encoded within the distal portion of exon 3. Hernandez, V.P., Higgins, L., Schwientek, M.S., Fallon, A.M. Insect Biochem. Mol. Biol. (2003) [Pubmed]
  2. Activation of the major drosophila heat-shock genes in vitro. Craine, B.L., Kornberg, T. Cell (1981) [Pubmed]
  3. Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Pham, A.D., Sauer, F. Science (2000) [Pubmed]
  4. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Croston, G.E., Kerrigan, L.A., Lira, L.M., Marshak, D.R., Kadonaga, J.T. Science (1991) [Pubmed]
  5. Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Ni, J.Q., Liu, L.P., Hess, D., Rietdorf, J., Sun, F.L. Genes Dev. (2006) [Pubmed]
  6. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Kamakaka, R.T., Bulger, M., Kadonaga, J.T. Genes Dev. (1993) [Pubmed]
  7. Localization of RNA polymerase in polytene chromosomes of Drosophila melanogaster. Jamrich, M., Greenleaf, A.L., Bautz, E.K. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  8. Drosophila melanogaster H1 histone is phosphorylated stably. Talmage, D.A., Blumenfeld, M. Mol. Cell. Biol. (1987) [Pubmed]
  9. HMG-D and histone H1 interplay during chromatin assembly and early embryogenesis. Ner, S.S., Blank, T., Pérez-Paralle, M.L., Grigliatti, T.A., Becker, P.B., Travers, A.A. J. Biol. Chem. (2001) [Pubmed]
  10. Isolation and characterization of a Drosophila hydei histone DNA repeat unit. Kremer, H., Hennig, W. Nucleic Acids Res. (1990) [Pubmed]
  11. A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence. Nabirochkin, S., Ossokina, M., Heidmann, T. J. Biol. Chem. (1998) [Pubmed]
  12. Localization of RNA polymerase B and histones in the nucleus of primary spermatocytes of Drosophila hydei, studied by immunofluorescence microscopy. Rungger-Brändle, E., Jamrich, M., Bautz, E.K. Chromosoma (1981) [Pubmed]
  13. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Yu, H., Fukami, K., Watanabe, Y., Ozaki, C., Takenawa, T. Eur. J. Biochem. (1998) [Pubmed]
  14. PCR cloning of a histone H1 gene from Anopheles stephensi mosquito cells: comparison of the protein sequence with histone H1-like, C-terminal extensions on mosquito ribosomal protein S6. Zhai, Y., Fallon, A.M. BMC Genomics (2005) [Pubmed]
  15. Major high mobility group like proteins of Drosophila melanogaster embryonic nuclei. Bassuk, J.A., Mayfield, J.E. Biochemistry (1982) [Pubmed]
  16. Histone H1-like, lysine-rich low complexity amino acid extensions in mosquito ribosomal proteins RpL23a and RpS6 have evolved independently. Hernandez, V.P., Fallon, A.M. Arch. Insect Biochem. Physiol. (2007) [Pubmed]
  17. Influence of carboxyl groups on conformation of histone H1 from Ceratitis capitata. Caballero, R., Fernandez, B., Montero, F. Int. J. Pept. Protein Res. (1987) [Pubmed]
  18. Ribosomal protein S6 cDNA from two Aedes mosquitoes encodes a carboxyl-terminal extension that resembles histone H1 proteins. Hernandez, V.P., Fallon, A.M. Genetica (1999) [Pubmed]
  19. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Nielsen, A.L., Oulad-Abdelghani, M., Ortiz, J.A., Remboutsika, E., Chambon, P., Losson, R. Mol. Cell (2001) [Pubmed]
  20. The direct interaction between ASH2, a Drosophila trithorax group protein, and SKTL, a nuclear phosphatidylinositol 4-phosphate 5-kinase, implies a role for phosphatidylinositol 4,5-bisphosphate in maintaining transcriptionally active chromatin. Cheng, M.K., Shearn, A. Genetics (2004) [Pubmed]
  21. A new translational repression element and unusual transcriptional control regulate expression of don juan during Drosophila spermatogenesis. Blümer, N., Schreiter, K., Hempel, L., Santel, A., Hollmann, M., Schäfer, M.A., Renkawitz-Pohl, R. Mech. Dev. (2002) [Pubmed]
  22. Alterations in titer and distribution of high mobility group proteins during embryonic development of Drosophila melanogaster. Renner, U., Ghidelli, S., Schäfer, M.A., Wiśniewski, J.R. Biochim. Biophys. Acta (2000) [Pubmed]
  23. Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Santoso, B., Kadonaga, J.T. Nat. Struct. Mol. Biol. (2006) [Pubmed]
  24. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Becker, P.B., Wu, C. Mol. Cell. Biol. (1992) [Pubmed]
  25. Periodic binding of individual core histones to DNA: inadvertent purification of the core histone H2B as a putative enhancer-binding factor. Kerrigan, L.A., Kadonaga, J.T. Nucleic Acids Res. (1992) [Pubmed]
  26. Preferential condensation of SAR-DNA by histone H1 and its SPKK containing octapeptide repeat motif. Khadake, J.R., Rao, M.R. FEBS Lett. (1997) [Pubmed]
 
WikiGenes - Universities