The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism.

A mouse model of Rubinstein-Taybi syndrome (RTS) was generated by an insertional mutation into the cyclic AMP response element-binding protein (CREB)-binding protein (CBP) gene. Heterozygous CBP-deficient mice, which had truncated CBP protein (residues 1-1084) containing the CREB-binding domain (residues 462-661), showed clinical features of RTS, such as growth retardation (100%), retarded osseous maturation (100%), hypoplastic maxilla with narrow palate (100%), cardiac anomalies (15%) and skeletal abnormalities (7%). Truncated CBP is considered to have been acting during development as a dominant-negative inhibitor to lead to the phenotypes of RTS in mice. Our studies with step-through-type passive avoidance tests and with fear conditioning test showed that mice were deficient in long-term memory (LTM). In contrast, short-term memory (STM) appeared to be normal. These results implicate a crucial role for CBP in mammalian LTM. Our CBP +/- mice would be an excellent model for the study of the role of CBP in development and memory storage mechanisms.[1]

References

  1. Truncated CBP protein leads to classical Rubinstein-Taybi syndrome phenotypes in mice: implications for a dominant-negative mechanism. Oike, Y., Hata, A., Mamiya, T., Kaname, T., Noda, Y., Suzuki, M., Yasue, H., Nabeshima, T., Araki, K., Yamamura, K. Hum. Mol. Genet. (1999) [Pubmed]
 
WikiGenes - Universities