The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

A mutant trypsin-like enzyme from Streptomyces fradiae, created by site-directed mutagenesis, improves affinity chromatography for protein trypsin inhibitors.

The Ser-170 residue of a trypsin-like enzyme from Streptomyces fradiae ( SFT), which is considered to be the active-site serine, was replaced with alanine by site-directed mutagenesis to improve the affinity chromatography step for a Kazal-type trypsin inhibitor pancreatic secretory trypsin inhibitor (PSTI). The resulting mutant SFT, designated as [S170A]SFT, was expressed in Streptomyces lividans and purified to homogeneity. [S170A]SFT was catalytically inactive, but still had the ability to bind tightly to PSTI and to soybean trypsin inhibitor with dissociation constants of 3.1 x 10(-7) M and 1.9 x 10(-8) M respectively. We further demonstrated that recombinant human PSTI secreted into Saccharomyces cerevisiae culture broth could be purified to homogeneity with a one-step [S170A]SFT-affinity column. The purified PSTI contained no molecules intramolecularly cleaved by active trypsin, which are found when trypsin-affinity chromatography is used for the purification. This eliminated the need for further separation of intact PSTI from intramolecularly cleaved PSTI by high-performance liquid chromatography, thus simplifying and improving its purification process.[1]

References

 
WikiGenes - Universities