The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances.

Transcription factors that are bound specifically to DNA often interact with each other over thousands of base pairs [1] [2]. Large DNA loops resulting from such interactions have been observed in Escherichia coli with the transcription factors deoR [3] and NtrC [4], but such interactions are not, as yet, well understood. We propose that unique protein complexes, that are not present in solution, may form specifically on DNA. Their uniqueness would make it possible for them to interact tightly and specifically with each other. We used the repressor and operators of coliphage lambda to construct a model system in which to test our proposition. lambda repressor is a dimer at physiological concentrations, but forms tetramers and octamers at a hundredfold higher concentration. We predict that two lambda repressor dimers form a tetramer in vitro when bound to two lambda operators spaced 24 bp apart and that two such tetramers interact to form an octamer. We examined, in vitro, relaxed circular plasmid DNA in which such operator pairs were separated by 2,850 bp and 2,470 bp. Of these molecules, 29% formed loops as seen by electron microscopy (EM). The loop increased the tightness of binding of lambda repressor to lambda operator. Consequently, repression of the lambda PR promoter in vivo was increased fourfold by the presence of a second pair of lambda operators, separated by a distance of 3,600 bp.[1]

References

  1. Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Révet, B., von Wilcken-Bergmann, B., Bessert, H., Barker, A., Müller-Hill, B. Curr. Biol. (1999) [Pubmed]
 
WikiGenes - Universities