The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Gene Review

lambdap51  -  exclusion protein

Enterobacteria phage lambda

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of lambdap51


High impact information on lambdap51


Chemical compound and disease context of lambdap51


Biological context of lambdap51


Anatomical context of lambdap51


Associations of lambdap51 with chemical compounds

  • Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions [11].
  • By using a nonleaky promoter, we have achieved > 95% replacement of tryptophan in the repressor [12].
  • Purified lambda repressor protein is shown to reduce the lambda DNA-directed synthesis of proteins in vitro as determined both by net amino-acid incorporation and by analysis of specific lambda-coded proteins resolved by sodium dodecyl sulfate/polyacrylamide slab gel electrophoresis [21].
  • The assignment of arm resonances is made possible by the construction of mutant repressor genes containing successive NH2-terminal deletions [22].
  • Additional contacts of lambda repressor and Cro protein with DNA, not observed by other chemical footprinting methods, are revealed by hydroxyl radical footprinting [23].

Physical interactions of lambdap51


Regulatory relationships of lambdap51

  • This approach allowed us to regulate the function of the lytic repressor at will and to prevent it from repressing cI, because lac repressor could not repress P(RM) in our constructs [25].
  • This mutated operator structure accounts for the constitutive expression of their PR promoter either in cells overproducing the lambda repressor or in cells overproducing the cro gene product [26].

Other interactions of lambdap51

  • The activity of the repressor is epistatic to the expression of gene tof coding for the antirepressor (Tof) [3].
  • This sequence was determined by direct sequencing techniques and includes the codons for 11 carboxyterminal aminoacids of the cI product, the lambda repressor [27].
  • Gene regulation at the right operator (OR) of bacteriophage lambda. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro [28].
  • This work confirms that like repressor and Int, the 28.5-kilodalton protein, identified as Rex on HB gels, is postively regulated by the lambdacII and cIII products and negatively controlled Cro [29].
  • The DNA fragments cloned into these plasmids are under control of the strong pL promoter, which can be regulated by the lambda repressor, and the antitermination activity of the N gene product [30].

Analytical, diagnostic and therapeutic context of lambdap51


  1. Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Maniatis, T., Ptashne, M., Backman, K., Kield, D., Flashman, S., Jeffrey, A., Maurer, R. Cell (1975) [Pubmed]
  2. Nucleotide sequence of the rightward operator of phage lambda. Maniatis, T., Jeffrey, A., Kleid, D.G. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  3. Control of bacteriophage lambda repressor establishment transcription: kinetics of l-strand transcription from the y-cII-oop-O-P region. Hayes, S., Hayes, C. Mol. Gen. Genet. (1979) [Pubmed]
  4. IS5 increases recombination in adjacent regions as shown for the repressor gene of coliphage lambda. Lieb, M. Gene (1980) [Pubmed]
  5. Mutants of Escherichia coli integration host factor: DNA-binding and recombination properties. Hales, L.M., Gumport, R.I., Gardner, J.F. Biochimie (1994) [Pubmed]
  6. Crystal structure of the lambda repressor C-terminal domain provides a model for cooperative operator binding. Bell, C.E., Frescura, P., Hochschild, A., Lewis, M. Cell (2000) [Pubmed]
  7. The solution structure of the Oct-1 POU-specific domain reveals a striking similarity to the bacteriophage lambda repressor DNA-binding domain. Assa-Munt, N., Mortishire-Smith, R.J., Aurora, R., Herr, W., Wright, P.E. Cell (1993) [Pubmed]
  8. A single glutamic acid residue plays a key role in the transcriptional activation function of lambda repressor. Bushman, F.D., Shang, C., Ptashne, M. Cell (1989) [Pubmed]
  9. How lambda repressor and lambda Cro distinguish between OR1 and OR3. Hochschild, A., Douhan, J., Ptashne, M. Cell (1986) [Pubmed]
  10. DNA sequence analysis of Tn10 insertions: origin and role of 9 bp flanking repetitions during Tn10 translocation. Kleckner, N. Cell (1979) [Pubmed]
  11. Sequence requirements for coiled-coils: analysis with lambda repressor-GCN4 leucine zipper fusions. Hu, J.C., O'Shea, E.K., Kim, P.S., Sauer, R.T. Science (1990) [Pubmed]
  12. Spectral enhancement of proteins: biological incorporation and fluorescence characterization of 5-hydroxytryptophan in bacteriophage lambda cI repressor. Ross, J.B., Senear, D.F., Waxman, E., Kombo, B.B., Rusinova, E., Huang, Y.T., Laws, W.R., Hasselbacher, C.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  13. Effect of single amino acid replacements on the thermal stability of the NH2-terminal domain of phage lambda repressor. Hecht, M.H., Sturtevant, J.M., Sauer, R.T. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  14. Autoregulation and function of a repressor in bacteriophage lambda. Ptashne, M., Backman, K., Humayun, M.Z., Jeffrey, A., Maurer, R., Meyer, B., Sauer, R.T. Science (1976) [Pubmed]
  15. Completed DNA sequences and organization of repressor-binding sites in the operators of phage lambda. Humayun, Z., Jeffrey, A., Ptashne, M. J. Mol. Biol. (1977) [Pubmed]
  16. T lymphocyte response to bacteriophage lambda repressor cI protein. Recognition of the same peptide presented by Ia molecules of different haplotypes. Lai, M.Z., Ross, D.T., Guillet, J.G., Briner, T.J., Gefter, M.L., Smith, J.A. J. Immunol. (1987) [Pubmed]
  17. Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. Frandji, P., Oskéritzian, C., Cacaraci, F., Lapeyre, J., Peronet, R., David, B., Guillet, J.G., Mécheri, S. J. Immunol. (1993) [Pubmed]
  18. Distal CCAAT box deletion in the A gamma globin gene of two black adolescents with elevated fetal A gamma globin. Gilman, J.G., Mishima, N., Wen, X.J., Stoming, T.A., Lobel, J., Huisman, T.H. Nucleic Acids Res. (1988) [Pubmed]
  19. Unusual ribosome binding properties of mRNA encoding bacteriophage lambda repressor. Balakin, A.G., Skripkin, E.A., Shatsky, I.N., Bogdanov, A.A. Nucleic Acids Res. (1992) [Pubmed]
  20. Structure and function of the repressor of bacteriophage lambda. II. Isolation and characterization of a lambda mutant which produces repressor having higher affinity for operators. Nag, D.K., Chattopadhyay, D.J., Mandal, N.C. Mol. Gen. Genet. (1984) [Pubmed]
  21. Repression and autogenous stimulation in vitro by bacteriophage lambda repressor. Dottin, R.P., Cutler, L.S., Pearson, M.L. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  22. Dynamic filtering by two-dimensional 1H NMR with application to phage lambda repressor. Weiss, M.A., Eliason, J.L., States, D.J. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  23. Hydroxyl radical "footprinting": high-resolution information about DNA-protein contacts and application to lambda repressor and Cro protein. Tullius, T.D., Dombroski, B.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  24. Mechanism of action of the cro protein of bacteriophage lambda. Johnson, A., Meyer, B.J., Ptashne, M. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  25. Role of the lytic repressor in prophage induction of phage lambda as analyzed by a module-replacement approach. Atsumi, S., Little, J.W. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  26. Nucleotide sequence of the operators of lambda ultravirulent mutants. Bailone, A., Galibert, F. Nucleic Acids Res. (1980) [Pubmed]
  27. DNA sequence at the end of the cI gene in bacteriophage lambda. Humayun, Z. Nucleic Acids Res. (1977) [Pubmed]
  28. Gene regulation at the right operator (OR) of bacteriophage lambda. II. OR1, OR2, and OR3: their roles in mediating the effects of repressor and cro. Meyer, B.J., Maurer, R., Ptashne, M. J. Mol. Biol. (1980) [Pubmed]
  29. Anomalous behavior of bacteriophage lambda polypeptides in polyacrylamide gels: resolution, identification, and control of the lambda rex gene product. Belfort, M. J. Virol. (1978) [Pubmed]
  30. Plasmid vectors for positive selection of DNA inserts controlled by the lambda pL promoter, repressor and antitermination function. Honigman, A., Oppenheim, A.B., Hohn, B., Hohn, T. Gene (1981) [Pubmed]
  31. The leftward promoter of bacteriophage lambda. Isolation on a small restriction fragment and deletion of adjacent regions. Horn, G.T., Wells, R.D. J. Biol. Chem. (1981) [Pubmed]
  32. Structural analysis of the carboxy terminus of bacteriophage lambda repressor determined by antipeptide antibodies. Sussman, R., Alexander, H.B. J. Bacteriol. (1989) [Pubmed]
  33. Mutant lambda phage repressor with a specific defect in its positive control function. Guarente, L., Nye, J.S., Hochschild, A., Ptashne, M. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  34. In vivo mutagenesis induced by CC-1065 and adozelesin DNA alkylation in a transgenic mouse model. Monroe, T.J., Mitchell, M.A. Cancer Res. (1993) [Pubmed]
  35. Quantitative analysis of electrophoresis data: novel curve fitting methodology and its application to the determination of a protein-DNA binding constant. Shadle, S.E., Allen, D.F., Guo, H., Pogozelski, W.K., Bashkin, J.S., Tullius, T.D. Nucleic Acids Res. (1997) [Pubmed]
WikiGenes - Universities