The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Coliphages


High impact information on Coliphages

  • Coliphage N4 virion-encapsidated, DNA-dependent RNA polymerase (vRNAP) is inactive on double-stranded N4 DNA; however, denatured promoter-containing templates are accurately transcribed [6].
  • Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda [7].
  • Plasmids were constructed with and without interposition of the rho-independent coliphage T7 'early' terminator between a promoter and galK [8].
  • Compounds 3a, 3b, and 3c have been synthesized, and the interaction of distamycin A, 2, 3a, 3b, and 3c with calf thymus DNA, poly(dA-dT), poly(dG-dC), poly(dI-dC), pBR322 superhelical plasmid DNA, and, in the case of 3b, T4 coliphage DNA have been studied [9].
  • Tum function, encoded near the right-hand end of the coliphage 186 chromosome, is under the control of promoter p95 [10].

Chemical compound and disease context of Coliphages


Biological context of Coliphages


Anatomical context of Coliphages

  • In the RNA coliphage SP, the gene for the maturation protein was found to be the best target for this type of immune system; mRNA-interfering complementary RNAs specific to the genes for coat protein and replicase were less effective in preventing infection [21].
  • The ability of the modified ribosomes to form an initiation complex as measured by the A-U-G or coliphage MS2 RNA dependent binding of (14-C)-fmet-tRNA-fmet was also impaired, as was their ability to incorporate (14-C) lysine into protein with MS2 RNA as messenger [22].
  • Similar concentrations of both larger and smaller particles, such as polystyrene latex spheres and coliphage f2, also exhibited a low degree of interaction, viz., 17 to 37%, with microtubules [23].
  • It is concluded that in K. pneumoniae adherence to epithelial cells is mediated by the receptor for coliphages T7 (and T3), which in turn recognizes D-mannose in the receptors it binds [24].
  • The major coat protein of coliphage M13 is also bound to the cytoplasmic membrane (prior to phage assembly) but with its antigenic sites exposed to the exterior of the cell [25].

Gene context of Coliphages


Analytical, diagnostic and therapeutic context of Coliphages


  1. Discrete length classes of DNA depend on mode of dehydration. Vollenweider, H.J., James, A., Szybalski, W. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  2. M13 procoat inserts into liposomes in the absence of other membrane proteins. Geller, B.L., Wickner, W. J. Biol. Chem. (1985) [Pubmed]
  3. The Cro-like Apl repressor of coliphage 186 is required for prophage excision and binds near the phage attachment site. Dodd, I.B., Reed, M.R., Egan, J.B. Mol. Microbiol. (1993) [Pubmed]
  4. The dual role of Apl in prophage induction of coliphage 186. Reed, M.R., Shearwin, K.E., Pell, L.M., Egan, J.B. Mol. Microbiol. (1997) [Pubmed]
  5. Molecular weight of DNA from actinophage MSP2. Lancaster, W.D., Jones, L.A. J. Virol. (1975) [Pubmed]
  6. Specific sequences and a hairpin structure in the template strand are required for N4 virion RNA polymerase promoter recognition. Glucksmann, M.A., Markiewicz, P., Malone, C., Rothman-Denes, L.B. Cell (1992) [Pubmed]
  7. Thermosensitivity of a DNA recognition site: activity of a truncated nutL antiterminator of coliphage lambda. Peltz, S.W., Brown, A.L., Hasan, N., Podhajska, A.J., Szybalski, W. Science (1985) [Pubmed]
  8. Transcriptional termination at a fully rho-independent site in Escherichia coli is prevented by uninterrupted translation of the nascent RNA. Wright, J.J., Hayward, R.S. EMBO J. (1987) [Pubmed]
  9. Rational design of substituted tripyrrole peptides that complex with DNA by both selective minor-groove binding and electrostatic interaction with the phosphate backbone. Bruice, T.C., Mei, H.Y., He, G.X., Lopez, V. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  10. UV induction of coliphage 186: prophage induction as an SOS function. Lamont, I., Brumby, A.M., Egan, J.B. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  11. Acquisition of a determinant for chloramphenicol resistance by coliphage lambda. Gottesman, M.M., Rosner, J.L. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  12. A gene of bacteriophage T4 whose product prevents true late transcription on cytosine-containing T4 DNA. Snyder, L., Gold, L., Kutter, E. Proc. Natl. Acad. Sci. U.S.A. (1976) [Pubmed]
  13. Possible role for thymine glycol in the selective inhibition of DNA synthesis on oxidized DNA templates. Rouet, P., Essigmann, J.M. Cancer Res. (1985) [Pubmed]
  14. Primary structure of the major coat protein of the filamentous bacterial viruses, If1 and Ike. Nakashima, Y., Frangione, B., Wiseman, R.L., Konigsberg, W.H. J. Biol. Chem. (1981) [Pubmed]
  15. Sequence of the A-protein of coliphage MS2. I. Isolation of A-protein, determination of the NH2- and COOH-terminal sequences, isolation and amino acid sequence of the tryptic peptides. Nolf, F.A., Vandekerckhove, J.S., Lenaerts, A.K., Van Montagu, M.C. J. Biol. Chem. (1977) [Pubmed]
  16. Formation of rolling-circle molecules during phi X174 complementary strand DNA replication. Mok, M., Marians, K.J. J. Biol. Chem. (1987) [Pubmed]
  17. DNA binding by the coliphage 186 repressor protein CI. Dodd, I.B., Egan, J.B. J. Biol. Chem. (1996) [Pubmed]
  18. Viral escape from antisense RNA. Bull, J.J., Jacobson, A., Badgett, M.R., Molineux, I.J. Mol. Microbiol. (1998) [Pubmed]
  19. Nucleotide sequence and analysis of the coliphage T3 S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites. Hughes, J.A., Brown, L.R., Ferro, A.J. Nucleic Acids Res. (1987) [Pubmed]
  20. The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Weigel, C., Schmidt, A., Seitz, H., Tüngler, D., Welzeck, M., Messer, W. Mol. Microbiol. (1999) [Pubmed]
  21. Engineering of the mRNA-interfering complementary RNA immune system against viral infection. Hirashima, A., Sawaki, S., Inokuchi, Y., Inouye, M. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  22. Modification of E. coli ribosomes and coliphage MS2 RNA by bisulfite: effects on ribosomal binding and protein synthesis. Braverman, B., Shapiro, R., Szer, W. Nucleic Acids Res. (1975) [Pubmed]
  23. Adenovirus binds to rat brain microtubules in vitro. Luftig, R.B., Weihing, R.R. J. Virol. (1975) [Pubmed]
  24. Identification of the major adherence ligand of Klebsiella pneumoniae in the receptor for coliphage T7 and alteration of Klebsiella adherence properties by lysogenic conversion. Pruzzo, C., Debbia, E.A., Satta, G. Infect. Immun. (1980) [Pubmed]
  25. Fractionation of membrane vesicles from coliphage M13-infected Escherichia coli. Wickner, W. J. Bacteriol. (1976) [Pubmed]
  26. Primary structure of the phage P22 repressor and its gene c2. Sauer, R.T., Pan, J., Hopper, P., Hehir, K., Brown, J., Poteete, A.R. Biochemistry (1981) [Pubmed]
  27. Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. Ranade, K., Poteete, A.R. J. Bacteriol. (1993) [Pubmed]
  28. Nucleotide sequence and expression of the gene for the site-specific integration protein from bacteriophage HP1 of Haemophilus influenzae. Goodman, S.D., Scocca, J.J. J. Bacteriol. (1989) [Pubmed]
  29. Selection by genetic transformation of a Saccharomyces cerevisiae mutant defective for the nuclear uracil-DNA-glycosylase. Burgers, P.M., Klein, M.B. J. Bacteriol. (1986) [Pubmed]
  30. Site-specific recombination in human cells catalyzed by the wild-type integrase protein of coliphage HK022. Kolot, M., Meroz, A., Yagil, E. Biotechnol. Bioeng. (2003) [Pubmed]
WikiGenes - Universities