The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP.

Synaptobrevin is a key constituent of the synaptic vesicle membrane. The neuronal-synaptobrevin (n-syb) gene in Drosophila is essential for nerve-evoked synaptic currents, but miniature excitatory synaptic currents (mESCs) remain even in the complete absence of this gene. To further characterize the defect in these mutants, we have examined conditions that stimulate secretion. Despite the inability of an action potential to trigger fusion, high K+ saline could increase the frequency of mESCs 4- to 17-fold in a Ca2+-dependent manner, and the rate of fusion approached 25% of that seen in wild-type synapses under the same conditions. Similarly, the mESC frequency in n-syb null mutants could be increased by a Ca2+ ionophore, A23187, and by black widow spider venom. Thus, the ability of the vesicles to fuse in response to sustained increases in cytosolic Ca2+ persisted in the absence of this protein. Tetanic stimulation could also increase the frequency of mESCs, particularly toward the end of a train and after the train of stimuli. In contrast, these mutants did not respond to an elevation of cAMP induced by an activator of adenylyl cyclase, forskolin, or a membrane-permeable analog of cAMP, dibutyryl cAMP, which in wild-type synapses causes a marked increase in the mESC frequency even in the absence of external Ca2+. These results are discussed in the context of models that invoke a special role for n-syb in coupling fusion to the transient, local changes in Ca2+ and an as yet unidentified target of cAMP.[1]

References

  1. Selective effects of neuronal-synaptobrevin mutations on transmitter release evoked by sustained versus transient Ca2+ increases and by cAMP. Yoshihara, M., Ueda, A., Zhang, D., Deitcher, D.L., Schwarz, T.L., Kidokoro, Y. J. Neurosci. (1999) [Pubmed]
 
WikiGenes - Universities