The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Functional analysis of a mouse brain Elk-type K+ channel.

Members of the Ether à go-go (Eag) K+ channel subfamilies Eag, Erg, and Elk are widely expressed in the nervous system, but their neural functions in vivo remain largely unknown. The biophysical properties of channels from the Eag and Erg subfamilies have been described, and based on their characteristic features and expression patterns, Erg channels have been associated with native currents in the heart. Little is known about the properties of channels from the Elk subfamily. We have identified a mouse gene, Melk2, that encodes a predicted polypeptide with 48% amino acid identity to Drosophila Elk but only 40 and 36% identity with mouse Erg (Merg) and Eag (Meag), respectively. Melk2 RNA appears to be expressed at high levels only in brain tissue. Functional expression of Melk2 in Xenopus oocytes reveals large, transient peaks of current at the onset of depolarization. Like Meag currents, Melk2 currents activate relatively quickly, but they lack the nonsuperimposable Cole-Moore shift characteristic of the Eag subfamily. Melk2 currents are insensitive to E-4031, a class III antiarrhythmic compound that blocks the Human Ether-à-go-go-Related Gene (HERG) channel and its counterpart in native tissues, IKr. Melk2 channels exhibit inward rectification because of a fast C-type inactivation mechanism, but the slower rate of inactivation and the faster rate of activation results in less inward rectification than that observed in HERG channels. This characterization of Melk currents should aid in identification of native counterparts to the Elk subfamily of channels in the nervous system.[1]

References

  1. Functional analysis of a mouse brain Elk-type K+ channel. Trudeau, M.C., Titus, S.A., Branchaw, J.L., Ganetzky, B., Robertson, G.A. J. Neurosci. (1999) [Pubmed]
 
WikiGenes - Universities