The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

U50,488H-induced internalization of the human kappa opioid receptor involves a beta-arrestin- and dynamin-dependent mechanism. Kappa receptor internalization is not required for mitogen-activated protein kinase activation.

Agonist-promoted internalization of some G protein-coupled receptors has been shown to mediate receptor desensitization, resensitization, and down-regulation. In this study, we investigated whether opioids induced internalization of the human and rat kappa opioid receptors stably expressed in Chinese hamster ovary cells, the potential mechanisms involved in this process and its possible role in activation of mitogen-activated protein (MAP) kinase. Exposure of the human kappa receptor to the agonists U50,488H, U69,593, ethylketocyclazocine, or tifluadom, but not etorphine, promoted receptor internalization. However, none of these agonists induced significant internalization of the rat kappa opioid receptor. U50, 488H-induced human kappa receptor internalization was time- and concentration-dependent, with 30-40% of the receptors internalized following a 30-min exposure to 1 microM U50,488H. Agonist removal resulted in the receptors gradually returning to the cell surface over a 60-min period. The antagonist naloxone blocked U50, 488H-induced internalization without affecting internalization itself, while pretreatment with pertussis toxin had no effect on U50, 488H-induced internalization. In contrast, incubation with sucrose (0.4-0.8 M) significantly reduced U50,488H-induced internalization of the kappa receptor. While co-expression of the wild type GRK2, beta-arrestin, or dynamin I had no effect on kappa receptor internalization, co-expression of the dominant negative mutants GRK2-K220R, beta-arrestin (319-418), or dynamin I-K44A significantly inhibited receptor internalization. Whether receptor internalization is critical for MAP kinase activation was next investigated. Co-expression of dominant negative mutants of beta-arrestin or dynamin I, which greatly reduced U50,488H-induced internalization, did not affect MAP kinase activation by the agonist. In addition, etorphine, which did not promote human kappa receptor internalization, was able to fully activate MAP kinase. Moreover, U50,488H or etorphine stimulation of the rat kappa receptor, which did not undergo internalization, also effectively activated MAP kinase. Thus, U50,488H-induced internalization of the human kappa opioid receptor in Chinese hamster ovary cells occurs via a GRK-, beta-arrestin-, and dynamin I-dependent process that likely involves clathrin-coated pits. In addition, internalization of the kappa receptor is not required for activation of MAP kinase.[1]

References

 
WikiGenes - Universities