The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

GTPBP1  -  GTP binding protein 1

Homo sapiens

Synonyms: G-protein 1, GP-1, GP1, GTP-binding protein 1, HSPC018
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GTPBP1

  • Preincubation of permeabilized macrophages with GDP beta S abrogated the effects of GTP gamma S. Our results suggest that the signaling alpha 2M receptor is coupled to a pertussis toxin-insensitive G protein and possibly to a cholera toxin-sensitive G protein [1].
  • We have altered the structure of the COOH-terminus of the vesicular stomatitis virus (VSV) glycoprotein (G) by introducing deletions into a cDNA clone encoding G protein [2].
  • Association of a human G-protein beta3 subunit variant with hypertension [3].
  • We examined the ability of chemokine receptors and related G protein-coupled receptors to facilitate infection by primary, clinical HIV-1 isolates [4].
  • Furthermore, analysis of neuroblastoma cells revealed that a similar tyrosine kinase-dependent pathway links endogenous G protein-coupled receptors to suppression of the native RAK channel [5].
  • Inhibition of the EGFR transduction pathway inhibited c-fos stimulation and ERK activation by either ligand, suggesting that in ovarian cancer cells GPR30/EGFR signaling relays on ERalpha expression [6].
 

Psychiatry related information on GTPBP1

 

High impact information on GTPBP1

 

Chemical compound and disease context of GTPBP1

 

Biological context of GTPBP1

 

Anatomical context of GTPBP1

  • In the present study, our immunohistochemical analyses on mouse tissues revealed that GTPBP1 is expressed in some neurons and smooth muscle cells of various organs as well as macrophages [22].
  • Immunofluorescence analyses revealed that GTPBP1 is localized exclusively in cytoplasm and shows a diffuse granular network forming a gradient from the nucleus to the periphery of the cells in smooth muscle cell lines and macrophages [22].
  • To investigate the physiological role of GTPBP1, we used targeted gene disruption in embryonic stem cells to generate GTPBP1-deficient mice [22].
  • Incubation of cell membrane fractions with lactoferrin increased GTPase activity in a time- and dose-dependent manner, and treatment with LRP ligands suppressed cholera-toxin-mediated ADP-ribosylation of the Gsalpha subunit of a heterotrimeric G-protein [24].
  • GP-1 mRNA was readily detected in mouse brain, thymus, lung, and kidney, while GP-1 mRNA is rarely expressed in liver [25].
 

Associations of GTPBP1 with chemical compounds

  • One second messenger pathway in particular has been extensively studied; the receptor activates, via the G protein Golf, an adenylyl cyclase, resulting in an increase in adenosine 3',5'-cyclic monophosphate (cAMP), which elicits opening of cation channels directly gated by cAMP [26].
  • The cloning of a G protein-coupled extracellular Ca(2+) (Ca(o)(2+))-sensing receptor (CaR) has elucidated the molecular basis for many of the previously recognized effects of Ca(o)(2+) on tissues that maintain systemic Ca(o)(2+) homeostasis, especially parathyroid chief cells and several cells in the kidney [27].
  • Certain serine proteases that derive from the circulation (e.g., coagulation factors), inflammatory cells (e.g., mast cell and neutrophil proteases), and from multiple other sources (e.g., epithelial cells, neurons, bacteria, fungi) can cleave protease-activated receptors (PARs), a family of four G protein-coupled receptors [28].
  • Steroid hormones can regulate signaling via transcriptional control of the activities of the genes encoding members of G protein-linked pathways [29].
  • Tyrosine kinases activated by G protein-coupled receptors can phosphorylate and thereby suppress the activity of the delayed rectifier potassium channel Kv1 [30].
 

Physical interactions of GTPBP1

  • Like APP, APLP2 contains a cytoplasmic domain predicted to couple with the GTP-binding protein G(o) indicating that it may be an additional cell surface activator of this G protein [31].
  • Infection of target cells by HIV-1 requires initial binding interactions between the viral envelope glycoprotein gp120, the cell surface protein CD4, and one of the members of the seven-transmembrane G protein-coupled chemokine receptor family [32].
  • In whole cells, a small-molecular-weight G protein coimmunoprecipitated by anti-IL-1R antibody was a substrate for C3 transferase, which specifically ADP-ribosylates Rho GTPases [33].
  • G protein-coupled receptors induce EGF receptor (EGFR) signaling, leading to the proliferation and invasion of cancer cells [34].
  • The mutated GIRK2 retained the ability to interact with G protein betagamma subunits, and it showed almost the same inwardly rectifying property as the wild type [35].
 

Enzymatic interactions of GTPBP1

  • Kir6.2 can be phosphorylated at its PKA phosphorylation site in intact cells after G-protein (Gs)-coupled receptor or direct PKA stimulation [36].
  • Pretreatment of cells with 0.15 mmol/L stearate from 0 to 6 hours inhibits, in parallel, both the EGF-induced cell proliferation and pertussis-toxin-catalyzed ADP ribosylation of the G-protein associated with the EGFR [37].
  • Now several publications(1-4) indicate that Frizzled receptors are G-protein coupled and kinases were identified that phosphorylate the co-receptor LRP6 [38].
  • In vitro studies demonstrated that beta-arrestin-V53D bound better to clathrin than beta-arrestin but was significantly impaired in its interaction with phosphorylated G protein-coupled receptors [39].
  • Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex [40].
 

Co-localisations of GTPBP1

 

Regulatory relationships of GTPBP1

 

Other interactions of GTPBP1

  • We thus conclude that LRP is a signalling receptor that associates directly with a stimulatory heterotrimeric G-protein and activates a downstream PKA-dependent pathway [24].
  • The thyrotropin receptor (TSHR), a member of the large family of G protein-coupled receptors, controls both the function and growth of thyroid cells via stimulation of adenylyl cyclase [47].
  • The receptor, now termed CX3CR1, requires pertussis toxin-sensitive G protein signaling to induce migration but not to support adhesion, which also occurs without other adhesion molecules but requires the architecture of a chemokine domain atop the mucin stalk [48].
  • Sequence analysis of genes located in the 11q13 interval disclosed mutations in a gene homologous to the murine guanine nucleotide-binding protein (G protein), gamma3-linked gene (Gng3lg) in all BSCL2-linked families [49].
  • Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors [50].
 

Analytical, diagnostic and therapeutic context of GTPBP1

  • Ligation of the macrophage signalling receptor by alpha 2M-methylamine stimulates production of several second messengers and involves a pertussis toxin-insensitive G-protein [51].
  • Co-immunoprecipitation studies demonstrate that RGS10 associates specifically with the activated forms of two related G-protein subunits, G alphai3, and G alphaz, but fails to interact with the structurally and functionally distinct G alphas subunit [52].
  • AGS and related accessory proteins reveal unexpected diversity in G protein subunits as signal transducers within the cell [53].
  • Using polymerase chain reaction (PCR) amplification of HepG2 mRNA with primers based on highly conserved regions of the chemotactic subgroup of the G protein-coupled receptor family, we identified a PCR fragment from the formyl-methionyl-leucyl-phenylalanine (FMLP) receptor, as well as one from the C5a receptor [54].
  • Recent findings show that constitutively active G-protein-coupled receptors can also be regulated in an agonist-independent manner, which has important implications for the interpretation of the actions of (inverse) agonists and the results of site-directed-mutagenesis studies [55].

References

  1. Evidence for a second alpha 2-macroglobulin receptor. Misra, U.K., Chu, C.T., Gawdi, G., Pizzo, S.V. J. Biol. Chem. (1994) [Pubmed]
  2. Altered cytoplasmic domains affect intracellular transport of the vesicular stomatitis virus glycoprotein. Rose, J.K., Bergmann, J.E. Cell (1983) [Pubmed]
  3. Association of a human G-protein beta3 subunit variant with hypertension. Siffert, W., Rosskopf, D., Siffert, G., Busch, S., Moritz, A., Erbel, R., Sharma, A.M., Ritz, E., Wichmann, H.E., Jakobs, K.H., Horsthemke, B. Nat. Genet. (1998) [Pubmed]
  4. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Choe, H., Farzan, M., Sun, Y., Sullivan, N., Rollins, B., Ponath, P.D., Wu, L., Mackay, C.R., LaRosa, G., Newman, W., Gerard, N., Gerard, C., Sodroski, J. Cell (1996) [Pubmed]
  5. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Huang, X.Y., Morielli, A.D., Peralta, E.G. Cell (1993) [Pubmed]
  6. G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Albanito, L., Madeo, A., Lappano, R., Vivacqua, A., Rago, V., Carpino, A., Oprea, T.I., Prossnitz, E.R., Musti, A.M., Andò, S., Maggiolini, M. Cancer Res. (2007) [Pubmed]
  7. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R.M., Tanaka, H., Williams, S.C., Richarson, J.A., Kozlowski, G.P., Wilson, S., Arch, J.R., Buckingham, R.E., Haynes, A.C., Carr, S.A., Annan, R.S., McNulty, D.E., Liu, W.S., Terrett, J.A., Elshourbagy, N.A., Bergsma, D.J., Yanagisawa, M. Cell (1998) [Pubmed]
  8. G-protein cascades: gain and kinetics. Lamb, T.D., Pugh, E.N. Trends Neurosci. (1992) [Pubmed]
  9. G protein betagamma complex-mediated apoptosis by familial Alzheimer's disease mutant of APP. Giambarella, U., Yamatsuji, T., Okamoto, T., Matsui, T., Ikezu, T., Murayama, Y., Levine, M.A., Katz, A., Gautam, N., Nishimoto, I. EMBO J. (1997) [Pubmed]
  10. No abnormality in the gene for the G protein stimulatory alpha subunit in patients with bipolar disorder. Ram, A., Guedj, F., Cravchik, A., Weinstein, L., Cao, Q., Badner, J.A., Goldin, L.R., Grisaru, N., Manji, H.K., Belmaker, R.H., Gershon, E.S., Gejman, P.V. Arch. Gen. Psychiatry (1997) [Pubmed]
  11. The effects of seasons and light therapy on G protein levels in mononuclear leukocytes of patients with seasonal affective disorder. Avissar, S., Schreiber, G., Nechamkin, Y., Neuhaus, I., Lam, G.K., Schwartz, P., Turner, E., Matthews, J., Naim, S., Rosenthal, N.E. Arch. Gen. Psychiatry (1999) [Pubmed]
  12. Chemokine:receptor structure, interactions, and antagonism. Allen, S.J., Crown, S.E., Handel, T.M. Annu. Rev. Immunol. (2007) [Pubmed]
  13. Human chemokines: an update. Baggiolini, M., Dewald, B., Moser, B. Annu. Rev. Immunol. (1997) [Pubmed]
  14. The molecular biology of leukocyte chemoattractant receptors. Murphy, P.M. Annu. Rev. Immunol. (1994) [Pubmed]
  15. C5A anaphylatoxin and its seven transmembrane-segment receptor. Gerard, C., Gerard, N.P. Annu. Rev. Immunol. (1994) [Pubmed]
  16. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Ross, E.M., Wilkie, T.M. Annu. Rev. Biochem. (2000) [Pubmed]
  17. Receptor-type protein tyrosine phosphatase zeta as a component of the signaling receptor complex for midkine-dependent survival of embryonic neurons. Sakaguchi, N., Muramatsu, H., Ichihara-Tanaka, K., Maeda, N., Noda, M., Yamamoto, T., Michikawa, M., Ikematsu, S., Sakuma, S., Muramatsu, T. Neurosci. Res. (2003) [Pubmed]
  18. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. Weinstein, L.S., Shenker, A., Gejman, P.V., Merino, M.J., Friedman, E., Spiegel, A.M. N. Engl. J. Med. (1991) [Pubmed]
  19. G protein activation of a hormone-stimulated phosphatase in human tumor cells. Pan, M.G., Florio, T., Stork, P.J. Science (1992) [Pubmed]
  20. Identification of a gene located at chromosome 5q21 that is mutated in colorectal cancers. Kinzler, K.W., Nilbert, M.C., Vogelstein, B., Bryan, T.M., Levy, D.B., Smith, K.J., Preisinger, A.C., Hamilton, S.R., Hedge, P., Markham, A. Science (1991) [Pubmed]
  21. ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells. Anderson, R.J., Breckon, R., Dixon, B.S. J. Clin. Invest. (1991) [Pubmed]
  22. Immunocytochemical analyses and targeted gene disruption of GTPBP1. Senju, S., Iyama, K., Kudo, H., Aizawa, S., Nishimura, Y. Mol. Cell. Biol. (2000) [Pubmed]
  23. Mouse and human GTPBP2, newly identified members of the GP-1 family of GTPase. Kudo, H., Senju, S., Mitsuya, H., Nishimura, Y. Biochem. Biophys. Res. Commun. (2000) [Pubmed]
  24. Low-density-lipoprotein-receptor-related protein (LRP) interacts with a GTP-binding protein. Goretzki, L., Mueller, B.M. Biochem. J. (1998) [Pubmed]
  25. Identification of human and mouse GP-1, a putative member of a novel G-protein family. Senju, S., Nishimura, Y. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  26. Transduction mechanisms in vertebrate olfactory receptor cells. Schild, D., Restrepo, D. Physiol. Rev. (1998) [Pubmed]
  27. Extracellular calcium sensing and extracellular calcium signaling. Brown, E.M., MacLeod, R.J. Physiol. Rev. (2001) [Pubmed]
  28. Protease-activated receptors: contribution to physiology and disease. Ossovskaya, V.S., Bunnett, N.W. Physiol. Rev. (2004) [Pubmed]
  29. Physiological regulation of G protein-linked signaling. Morris, A.J., Malbon, C.C. Physiol. Rev. (1999) [Pubmed]
  30. The small GTP-binding protein RhoA regulates a delayed rectifier potassium channel. Cachero, T.G., Morielli, A.D., Peralta, E.G. Cell (1998) [Pubmed]
  31. Isolation and characterization of APLP2 encoding a homologue of the Alzheimer's associated amyloid beta protein precursor. Wasco, W., Gurubhagavatula, S., Paradis, M.D., Romano, D.M., Sisodia, S.S., Hyman, B.T., Neve, R.L., Tanzi, R.E. Nat. Genet. (1993) [Pubmed]
  32. The B-oligomer of pertussis toxin deactivates CC chemokine receptor 5 and blocks entry of M-tropic HIV-1 strains. Alfano, M., Schmidtmayerova, H., Amella, C.A., Pushkarsky, T., Bukrinsky, M. J. Exp. Med. (1999) [Pubmed]
  33. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. Singh, R., Wang, B., Shirvaikar, A., Khan, S., Kamat, S., Schelling, J.R., Konieczkowski, M., Sedor, J.R. J. Clin. Invest. (1999) [Pubmed]
  34. Phosphorylation of TNF-{alpha} converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Zhang, Q., Thomas, S.M., Lui, V.W., Xi, S., Siegfried, J.M., Fan, H., Smithgall, T.E., Mills, G.B., Grandis, J.R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  35. A glutamate residue at the C terminus regulates activity of inward rectifier K+ channels: implication for Andersen's syndrome. Chen, L., Kawano, T., Bajic, S., Kaziro, Y., Itoh, H., Art, J.J., Nakajima, Y., Nakajima, S. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  36. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. Béguin, P., Nagashima, K., Nishimura, M., Gonoi, T., Seino, S. EMBO J. (1999) [Pubmed]
  37. Stearate inhibition of breast cancer cell proliferation. A mechanism involving epidermal growth factor receptor and G-proteins. Wickramasinghe, N.S., Jo, H., McDonald, J.M., Hardy, R.W. Am. J. Pathol. (1996) [Pubmed]
  38. Kinases and G proteins join the Wnt receptor complex. Quaiser, T., Anton, R., Kühl, M. Bioessays (2006) [Pubmed]
  39. Modulation of the arrestin-clathrin interaction in cells. Characterization of beta-arrestin dominant-negative mutants. Krupnick, J.G., Santini, F., Gagnon, A.W., Keen, J.H., Benovic, J.L. J. Biol. Chem. (1997) [Pubmed]
  40. Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex. Lukov, G.L., Baker, C.M., Ludtke, P.J., Hu, T., Carter, M.D., Hackett, R.A., Thulin, C.D., Willardson, B.M. J. Biol. Chem. (2006) [Pubmed]
  41. Radioimmunochemical quantification of Gi alpha in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. Böhm, M., Eschenhagen, T., Gierschik, P., Larisch, K., Lensche, H., Mende, U., Schmitz, W., Schnabel, P., Scholz, H., Steinfath, M. J. Mol. Cell. Cardiol. (1994) [Pubmed]
  42. Phospholipase D: enzymology, mechanisms of regulation, and function. Exton, J.H. Physiol. Rev. (1997) [Pubmed]
  43. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Yeaman, C., Ayala, M.I., Wright, J.R., Bard, F., Bossard, C., Ang, A., Maeda, Y., Seufferlein, T., Mellman, I., Nelson, W.J., Malhotra, V. Nat. Cell Biol. (2004) [Pubmed]
  44. Neuropeptide Y and peptide YY inhibit lipolysis in human and dog fat cells through a pertussis toxin-sensitive G protein. Valet, P., Berlan, M., Beauville, M., Crampes, F., Montastruc, J.L., Lafontan, M. J. Clin. Invest. (1990) [Pubmed]
  45. CXC chemokine ligand 12-induced focal adhesion kinase activation and segregation into membrane domains is modulated by regulator of G protein signaling 1 in pro-B cells. Le, Y., Honczarenko, M., Glodek, A.M., Ho, D.K., Silberstein, L.E. J. Immunol. (2005) [Pubmed]
  46. Beta-arrestin2 is critically involved in CXCR4-mediated chemotaxis, and this is mediated by its enhancement of p38 MAPK activation. Sun, Y., Cheng, Z., Ma, L., Pei, G. J. Biol. Chem. (2002) [Pubmed]
  47. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Duprez, L., Parma, J., Van Sande, J., Allgeier, A., Leclère, J., Schvartz, C., Delisle, M.J., Decoulx, M., Orgiazzi, J., Dumont, J. Nat. Genet. (1994) [Pubmed]
  48. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Imai, T., Hieshima, K., Haskell, C., Baba, M., Nagira, M., Nishimura, M., Kakizaki, M., Takagi, S., Nomiyama, H., Schall, T.J., Yoshie, O. Cell (1997) [Pubmed]
  49. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Magré, J., Delépine, M., Khallouf, E., Gedde-Dahl, T., Van Maldergem, L., Sobel, E., Papp, J., Meier, M., Mégarbané, A., Bachy, A., Verloes, A., d'Abronzo, F.H., Seemanova, E., Assan, R., Baudic, N., Bourut, C., Czernichow, P., Huet, F., Grigorescu, F., de Kerdanet, M., Lacombe, D., Labrune, P., Lanza, M., Loret, H., Matsuda, F., Navarro, J., Nivelon-Chevalier, A., Polak, M., Robert, J.J., Tric, P., Tubiana-Rufi, N., Vigouroux, C., Weissenbach, J., Savasta, S., Maassen, J.A., Trygstad, O., Bogalho, P., Freitas, P., Medina, J.L., Bonnicci, F., Joffe, B.I., Loyson, G., Panz, V.R., Raal, F.J., O'Rahilly, S., Stephenson, T., Kahn, C.R., Lathrop, M., Capeau, J. Nat. Genet. (2001) [Pubmed]
  50. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Daub, H., Weiss, F.U., Wallasch, C., Ullrich, A. Nature (1996) [Pubmed]
  51. Ligation of the alpha 2-macroglobulin signalling receptor on macrophages induces protein phosphorylation and an increase in cytosolic pH. Misra, U.K., Gawdi, G., Pizzo, S.V. Biochem. J. (1995) [Pubmed]
  52. RGS10 is a selective activator of G alpha i GTPase activity. Hunt, T.W., Fields, T.A., Casey, P.J., Peralta, E.G. Nature (1996) [Pubmed]
  53. Accessory proteins for G proteins: partners in signaling. Sato, M., Blumer, J.B., Simon, V., Lanier, S.M. Annu. Rev. Pharmacol. Toxicol. (2006) [Pubmed]
  54. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. McCoy, R., Haviland, D.L., Molmenti, E.P., Ziambaras, T., Wetsel, R.A., Perlmutter, D.H. J. Exp. Med. (1995) [Pubmed]
  55. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Leurs, R., Smit, M.J., Alewijnse, A.E., Timmerman, H. Trends Biochem. Sci. (1998) [Pubmed]
 
WikiGenes - Universities