The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Selenophosphate as a substrate for mammalian selenocysteine synthase, its stability and toxicity.

The mechanism of selenocysteine synthesis on tRNASec in mammals was previously studied by means of HSe- as a Se donor to synthesize selenocysteine. It has been recently established that HSe- in E. coli is activated by ATP to become selenophosphate (SeP). In this study, we provide evidence that [75Se]selenocysteine is produced by bovine selenocysteine synthase from Ser-tRNASec and [75Se]Sep, synthesized from elemental 75Se and Tris(trimethylsilyl)phosphite. We also studied the stability of SeP by NMR measurement. SeP was stable during storage under nitrogen at -80 degrees C for 3 months in 0.2 M Hepes buffer at pH 6. 8. However, SeP decomposed at 0 degree C in air (half life 32 hrs) or at 22 degrees C under nitrogen (half life 30 hrs) at pH 6. 8. The half lives of SeP at -19 degrees C in air and at 0 degree C under nitrogen at pH 6.8 were 740 and 840 hrs, respectively. At pH 4 under nitrogen at 22 degrees C, the half life was 240 hrs. The half life was only 9.2 hrs at pH 9 under nitrogen at 0 degree C. Thus, SeP was proved to be stable at low temperature, under acidic and anaerobic conditions, but labile under neutral and alkaline conditions. The LD50 of SeP administered i.p. to mice was 37.5 mg/kg body weight.[1]

References

 
WikiGenes - Universities