The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Human DNA primase: anion inhibition, manganese stimulation, and their effects on in vitro start-site selection.

We examined the effects of Mn(2+) on eukaryotic DNA primase both in the presence and absence of 5 mM Mg(2+). In the absence of Mg(2+), Mn(2+)-supported primase activity to a level 4-fold greater than that obtained with Mg(2+) alone, and adding low levels of Mn(2+) (100 microM) to assays containing 5 mM Mg(2+) greatly stimulated primase. Increased activity was primarily due to more efficient utilization of NTPs, as reflected in a lower K(M) for NTPs. Under conditions of saturating NTPs, Mn(2+) had minimal effects on both the rate of initiation (i.e., dinucleotide synthesis) and processivity. The effects of Mn(2+) involve multiple metal binding sites on primase and may involve both the catalytic p49 subunit as well as the p58 subunit. Physiological levels of salt can inhibit primase activity due to the presence of an anion binding site and low levels of Mn(2+) significantly decreased this salt sensitivity. The implications of these results with respect to the biological role of primase are discussed.[1]

References

 
WikiGenes - Universities