Mechanical and chemical properties of cysteine-modified kinesin molecules.
To probe the structural changes within kinesin molecules, we made the mutants of motor domains of two-headed kinesin (4-411 aa) in which either all the five cysteines or all except Cys45 were mutated. A residual cysteine (Cys45) of the kinesin mutant was labeled with an environment-sensitive fluorescent probe, acrylodan. ATPase activity, mechanical properties, and fluorescence intensity of the mutants were measured. Upon acrylodan-labeled kinesin binding to microtubules in the presence of 1 mM AMPPNP, the peak intensity was enhanced by 3.4-fold, indicating the structural change of the kinesin head by the binding. Substitution of cysteines decreased both the maximum microtubule-activated ATPase and the sliding velocity to the same extent. However, the maximum force and the step size were not affected; the force produced by a single molecule was 6-6.5 pN, and a step size due to the hydrolysis of one ATP molecule by kinesin molecules was about 10 nm for all kinesins. This step size was close to a unitary step size of 8 nm. Thus, the mechanical events of kinesin are tightly coupled with the chemical events.[1]References
- Mechanical and chemical properties of cysteine-modified kinesin molecules. Iwatani, S., Iwane, A.H., Higuchi, H., Ishii, Y., Yanagida, T. Biochemistry (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg