The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Vha14-1  -  Vacuolar H[+] ATPase 14kD subunit 1

Drosophila melanogaster

Synonyms: ATP6V1F, ATPase, CG8210, Dmel\CG8210, V-ATPase 14 kDa subunit, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vha14

  • Its deduced translation product is a 124-amino-acid polypeptide sharing 90% identity with the Ms polypeptide and 50% identity with an analogous polypeptide of Saccharomyces cerevisiae, and a more distant similarity to a subunit of the Na(+)-transporting ATPase of Enterococcus hirae [1].
 

High impact information on Vha14

  • The catalytic core of CHRAC, the ATPase ISWI, also mobilized nucleosomes at the expense of energy [2].
  • Our results provide direct evidence for a conformational change of the kinesin motor domain during the ATPase cycle [3].
  • Kinesin, a microtubule-dependent ATPase, is believed to be involved in anterograde axonal transport [4].
  • But in combination with an activating factor removed during the purification, it exhibited microtubule-activated ATPase activity and dynamin-induced bundles showed evidence of ATP-dependent force production [5].
  • Cytoplasmic dynein is a microtubule-activated ATPase which produces force towards the minus ends of microtubules [6].
 

Biological context of Vha14

 

Anatomical context of Vha14

  • A complex of Tn-T, Tn-H and tropomyosin inhibited actomyosin ATPase activity and the inhibition was relieved by Tn-C from vertebrate striated muscle in the presence of Ca2+ [11].
  • Expression of the latter shows relatively little variation during development, or between adult head, thorax and abdomen, suggesting that the F-subunit is a relatively ubiquitous component of the V-ATPase [1].
  • Moreover, vacuolar-type H+-ATPase (V-ATPase) in the optic lobe is thought also to participate in such regulation [8].
  • In the visual systems of both fly species V-ATPase was localized immunocytochemically to the compound eye photoreceptors [8].
  • For each subunit, the single gene identified previously by microarray, as upregulated and abundant in tubules, is shown to be similarly abundant in other epithelia in which V-ATPases are known to be important; there thus appears to be a single dominant "plasma membrane" V-ATPase holoenzyme in Drosophila [12].
 

Associations of Vha14 with chemical compounds

  • The transparent Malpighian tubule phenotype first identified in lethal alleles of vha55, the gene encoding the B-subunit, is shown to be general to those plasma membrane V-ATPase subunits for which lethal alleles are available, and to be caused by failure to accumulate uric acid crystals [12].
  • In Drosophila, the Malpighian (renal) tubule contains large amounts of Na(+),K(+) ATPase that is known biochemically to be exquisitely sensitive to ouabain, yet the intact tissue is almost unaffected by even extraordinary concentrations [13].
  • Disassembly of the SNARE complex requires the ATPase N-ethylmaleimide-sensitive fusion protein (NSF) [14].
  • The nature of the vesicular uptake of glutamate was similar among all the vertebrates: the specificity for glutamate remained high, transport was energized by a vacuolar (V)-type ATPase, 2-4 mM chloride stimulated uptake three- to sixfold, and Km for glutamate was between 0.5 and 2 mM [15].
  • The chromatographically separated 174-kilodalton species from both organisms have been further distinguished through the use of polypeptide-specific antisera; finally, the glycoprotein purified from Drosophila embryos is fully sensitive to limited degradation by endoglycosidase H whereas the ATPase/dATPase polypeptide is completely resistant [16].
 

Physical interactions of Vha14

  • Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation [17].
 

Regulatory relationships of Vha14

 

Other interactions of Vha14

 

Analytical, diagnostic and therapeutic context of Vha14

References

  1. The Drosophila melanogaster gene vha14 encoding a 14-kDa F-subunit of the vacuolar ATPase. Guo, Y., Kaiser, K., Wieczorek, H., Dow, J.A. Gene (1996) [Pubmed]
  2. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Längst, G., Bonte, E.J., Corona, D.F., Becker, P.B. Cell (1999) [Pubmed]
  3. Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Hirose, K., Lockhart, A., Cross, R.A., Amos, L.A. Nature (1995) [Pubmed]
  4. Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Harrison, B.C., Marchese-Ragona, S.P., Gilbert, S.P., Cheng, N., Steven, A.C., Johnson, K.A. Nature (1993) [Pubmed]
  5. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Shpetner, H.S., Vallee, R.B. Nature (1992) [Pubmed]
  6. Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Holzbaur, E.L., Hammarback, J.A., Paschal, B.M., Kravit, N.G., Pfister, K.K., Vallee, R.B. Nature (1991) [Pubmed]
  7. The SzA mutations of the B subunit of the Drosophila vacuolar H+ ATPase identify conserved residues essential for function in fly and yeast. Du, J., Kean, L., Allan, A.K., Southall, T.D., Davies, S.A., McInerny, C.J., Dow, J.A. J. Cell. Sci. (2006) [Pubmed]
  8. Involvement of V-ATPase in the regulation of cell size in the fly's visual system. Pyza, E., Borycz, J., Giebultowicz, J.M., Meinertzhagen, I.A. J. Insect Physiol. (2004) [Pubmed]
  9. The multifunctional Drosophila melanogaster V-ATPase is encoded by a multigene family. Dow, J.A. J. Bioenerg. Biomembr. (1999) [Pubmed]
  10. Strand pairing by Rad54 and Rad51 is enhanced by chromatin. Alexiadis, V., Kadonaga, J.T. Genes Dev. (2002) [Pubmed]
  11. Troponin of asynchronous flight muscle. Bullard, B., Leonard, K., Larkins, A., Butcher, G., Karlik, C., Fyrberg, E. J. Mol. Biol. (1988) [Pubmed]
  12. Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles. Allan, A.K., Du, J., Davies, S.A., Dow, J.A. Physiol. Genomics (2005) [Pubmed]
  13. Resolution of the insect ouabain paradox. Torrie, L.S., Radford, J.C., Southall, T.D., Kean, L., Dinsmore, A.J., Davies, S.A., Dow, J.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  14. SNARE-complex disassembly by NSF follows synaptic-vesicle fusion. Littleton, J.T., Barnard, R.J., Titus, S.A., Slind, J., Chapman, E.R., Ganetzky, B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  15. Phylogenetic studies on the synaptic vesicle glutamate transport system. Tabb, J.S., Ueda, T. J. Neurosci. (1991) [Pubmed]
  16. A 174-kilodalton ATPase/dATPase polypeptide and a glycoprotein of apparently identical molecular weight are common but distinct components of higher eukaryotic nuclear structural protein subfractions. Berrios, M., Filson, A.J., Blobel, G., Fisher, P.A. J. Biol. Chem. (1983) [Pubmed]
  17. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation. Horsnell, W.G., Steel, G.J., Morgan, A. Biochemistry (2002) [Pubmed]
  18. An alternative domain near the ATP binding pocket of Drosophila myosin affects muscle fiber kinetics. Swank, D.M., Braddock, J., Brown, W., Lesage, H., Bernstein, S.I., Maughan, D.W. Biophys. J. (2006) [Pubmed]
  19. Kinesin's tail domain is an inhibitory regulator of the motor domain. Coy, D.L., Hancock, W.O., Wagenbach, M., Howard, J. Nat. Cell Biol. (1999) [Pubmed]
  20. CDK phosphorylation inhibits the DNA-binding and ATP-hydrolysis activities of the Drosophila origin recognition complex. Remus, D., Blanchette, M., Rio, D.C., Botchan, M.R. J. Biol. Chem. (2005) [Pubmed]
  21. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. Coast, G.M., Webster, S.G., Schegg, K.M., Tobe, S.S., Schooley, D.A. J. Exp. Biol. (2001) [Pubmed]
  22. Effect of casein kinase II-mediated phosphorylation on the catalytic cycle of topoisomerase II. Regulation of enzyme activity by enhancement of ATP hydrolysis. Corbett, A.H., DeVore, R.F., Osheroff, N. J. Biol. Chem. (1992) [Pubmed]
  23. Characterisation of vha26, the Drosophila gene for a 26 kDa E-subunit of the vacuolar ATPase. Guo, Y., Wang, Z., Carter, A., Kaiser, K., Dow, J.A. Biochim. Biophys. Acta (1996) [Pubmed]
  24. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Paul, S.M., Ternet, M., Salvaterra, P.M., Beitel, G.J. Development (2003) [Pubmed]
  25. Alternative exon-encoded regions of Drosophila myosin heavy chain modulate ATPase rates and actin sliding velocity. Swank, D.M., Bartoo, M.L., Knowles, A.F., Iliffe, C., Bernstein, S.I., Molloy, J.E., Sparrow, J.C. J. Biol. Chem. (2001) [Pubmed]
  26. Hormone-response Genes Are Direct in Vivo Regulatory Targets of Brahma (SWI/SNF) Complex Function. Zraly, C.B., Middleton, F.A., Dingwall, A.K. J. Biol. Chem. (2006) [Pubmed]
  27. Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. Grüne, T., Brzeski, J., Eberharter, A., Clapier, C.R., Corona, D.F., Becker, P.B., Müller, C.W. Mol. Cell (2003) [Pubmed]
  28. Molecular characterization of mutant alleles of the DNA repair/basal transcription factor haywire/ERCC3 in Drosophila. Mounkes, L.C., Fuller, M.T. Genetics (1999) [Pubmed]
  29. Amino acid sequence of a Ca(2+)-transporting ATPase from the sarcoplasmic reticulum of the cross-striated part of the adductor muscle of the deep sea scallop: comparison to serca enzymes of other animals. Shi, X., Chen, M., Huvos, P.E., Hardwicke, P.M. Comp. Biochem. Physiol. B, Biochem. Mol. Biol. (1998) [Pubmed]
  30. Role of transposable elements in heterochromatin and epigenetic control. Lippman, Z., Gendrel, A.V., Black, M., Vaughn, M.W., Dedhia, N., McCombie, W.R., Lavine, K., Mittal, V., May, B., Kasschau, K.D., Carrington, J.C., Doerge, R.W., Colot, V., Martienssen, R. Nature (2004) [Pubmed]
 
WikiGenes - Universities