The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanism of A-kinase-anchoring protein 79 (AKAP79) and protein kinase C interaction.

The A-kinase-anchoring protein AKAP79 co-ordinates the location of cAMP-dependent protein kinase, phosphatase 2B (PP2B/calcineurin) and protein kinase C ( PKC) at postsynaptic sites in neurons. In this report we focus on the mechanism of interaction between AKAP79 and PKC. We show that neither lipid activators nor kinase activation are required for association with AKAP79. The anchoring protein binds and inhibits the conserved catalytic core of PKCbetaII. AKAP79 also associates with conventional, novel and atypical isoforms of PKC in vitro and in vivo, and immunofluorescence staining of rat hippocampal neurons demonstrates that the murine anchoring-protein homologue AKAP150 is co-distributed with PKCalpha/beta, PKCepsilon or PKCiota. Binding of the AKAP79(31-52) peptide, which inhibits kinase activity, exposes the pseudosubstrate domain of PKCbetaII, allowing endoproteinase Arg-C proteolysis in the absence of kinase activators. Reciprocal experiments have identified two arginine residues at positions 39 and 40 that are essential for AKAP79(31-52) peptide inhibition of PKCbetaII. Likewise, the same mutations in the full-length anchoring protein reduced inhibition of PKCbetaII. Thus AKAP79 associates with multiple PKC isoforms through a mechanism involving protein-protein interactions at the catalytic core where binding of the anchoring protein inhibits kinase activity through displacement of the pseudosubstrate.[1]

References

  1. Mechanism of A-kinase-anchoring protein 79 (AKAP79) and protein kinase C interaction. Faux, M.C., Rollins, E.N., Edwards, A.S., Langeberg, L.K., Newton, A.C., Scott, J.D. Biochem. J. (1999) [Pubmed]
 
WikiGenes - Universities