Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc(1) complex.
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper we report the results of steered molecular dynamics simulations inducing, through an applied torque within 1 ns, a 56 degrees rotation of the soluble domain of ISP. For this purpose, a solvated structure of the bc(1) complex in a phospholipid bilayer (a total of 206,720 atoms) was constructed. A subset of 91,061 atoms was actually simulated with 45,131 moving atoms. Point charge distributions for the force field parametrization of heme groups and the Fe(2)S(2) cluster of the Rieske protein included in the simulated complex were determined. The simulations showed that rotation of the soluble domain of ISP is actually feasible. Several metastable conformations of the ISP during its rotation were identified and the interactions stabilizing the initial, final, and intermediate positions of the soluble head of the ISP domain were characterized. A pathway for proton conduction from the Q(o) site to the solvent via a water channel has been identified.[1]References
- Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc(1) complex. Izrailev, S., Crofts, A.R., Berry, E.A., Schulten, K. Biophys. J. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg