The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Arctuvin     benzene-1,4-diol

Synonyms: Eldoquin, Elopaque, Phiaquin, Tequinol, quinnone, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HYDROP

 

Psychiatry related information on HYDROP

 

High impact information on HYDROP

  • Phenidone and hydroquinone blockers of endothelium-dependent vasodilation, inhibited arteriolar dilation to ACH without affecting that to NP [7].
  • A novel family of cytochrome c quinol dehydrogenases that play an important role in bacterial respiratory chains was recognised in recent years [8].
  • X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination [8].
  • The operon coding for a respiratory quinol oxidase was cloned from thermoacidophilic archaebacterium Sulfolobus acidocaldarius [9].
  • Here we demonstrate that, after replacement of Glu-C180 with Gln or Ile by site-directed mutagenesis, the resulting mutants are unable to grow on fumarate, and the membrane-bound variant enzymes lack quinol oxidation activity [10].
 

Chemical compound and disease context of HYDROP

  • The nonphotosynthetic mutant R126 of Rhodobacter capsulatus has a cytochrome (cyt) bc1 complex (EC 1.10.2.2) with a defective quinol oxidation Qz(o,p) site but a functional quinone reduction Qc(i,n) site [11].
  • Thus, the formation of catechol and hydroquinone is the most likely cause of benzene toxicity [12].
  • Groups of 15 rats were given three i.p. injections of 25 mg/kg of body weight of MNAN within the initial 2-wk period, and commencing 1 wk thereafter they were administered 0.8% catechol, 0.8% resorcinol, or 0.8% hydroquinone in powdered basal diet or were given basal diet alone for 49 wk [13].
  • Bacillus subtilis contains two aa3-type terminal oxidases (caa3-605 and aa3-600) catalyzing cytochrome c and quinol oxidation, respectively, with the concomitant reduction of O2 to H2O (Lauraeus, M., Haltia, T., Saraste, M., and Wikström, M. (1991) Eur. J. Biochem. 197, 699-705) [14].
  • Probing substrate binding site of the Escherichia coli quinol oxidases using synthetic ubiquinol analogues [15].
 

Biological context of HYDROP

  • Oxidation of membrane-bound quinol molecules is a central step in the respiratory electron transport chains used by biological cells to generate ATP by oxidative phosphorylation [8].
  • Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site [16]?
  • We have studied the kinetics of the oxygen reaction of the fully reduced quinol oxidase, cytochrome bo3, using flow-flash and stopped flow techniques [17].
  • In this work, Gly-158 was changed by oligonucleotide-mediated mutagenesis to several other amino acids to define its role on quinol oxidation catalyzed by the cyt bc1 complex [11].
  • Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by beta-naphthoflavone and teri-butyl hydroquinone [18].
 

Anatomical context of HYDROP

 

Associations of HYDROP with other chemical compounds

  • Polymeric melanins undergo reversible oxidation-reduction reactions between cell wall-penetrating quinone and hydroquinone oxidation states and thus represent polymeric redox buffers; using strong oxidants, it is possible to titrate the melanin on living cells and thereby demonstrate protection conferred by melanin in several species [23].
  • In isolated mutant RCs, the kinetics of the first electron transfer, leading to formation of the semiquinone, QB-, and the proton-linked second electron transfer, leading to the formation of fully reduced quinol, were both greatly retarded, as observed previously in the Asp L213 --> Asn mutant [24].
  • Because benzene is metabolized to a variety of intermediate compounds and two of these, catechol and hydroquinone, have been reported to be potent SCE-inducers, it is possible that other known and proposed metabolites could have chromosome-damaging effects in lymphocytes [25].
  • The hydroquinone-containing cytostatic compound avarol inhibits predominantly growth of those cell lines which have a low level of superoxide dismutase [26].
  • Molecular modeling predicted covalent irreversible binding between quinol analogues and cysteine residues 32 and 35 of thioredoxin, thereby inhibiting enzyme activity [27].
 

Gene context of HYDROP

  • The Bacillus subtilis genome contains a homologue of yeast Sco1, YpmQ (hereafter termed BSco), deletion of which leads to a phenotype lacking in caa3 (CuA-containing) oxidase activity but expressing normal levels of aa3 (quinol) oxidase activity [28].
  • Hydroquinone and tert-butyl hydroquinone, prototypes of phenolic antioxidants, block lipopolysaccharide (LPS)-induced transcription of TNFalpha and a nuclear factor (NF)-kappaB-mediated reporter gene expression, suggesting NF-kappaB as a target in the inhibition [29].
  • Treatment of normal murine stromal macrophages in culture with hydroquinone (HQ) also showed an inhibition in processing of pre-IL-1 alpha [30].
  • The properties of MG in vitro, including (1) pigmentation inhibition in melanocytes, (2) tyrosinase inhibition and selectivity, (3) reduced cytotoxicity relative to HQ, and (4) lack of mutagenic potential in mammalian cells, establish MG as a superior candidate skin-lightening agent [31].
  • Results: Tissue sections stained with cresyl violet did not reveal any gross differences between HQ-treated Eker (Tsc2Ek/+) rats and siblings (Tsc2+/+) [32].
 

Analytical, diagnostic and therapeutic context of HYDROP

References

  1. Survival of mice receiving melanoma transplants is promoted by hydroquinone. Chavin, W., Jelonek, E.J., Reed, A.H., Binder, L.R. Science (1980) [Pubmed]
  2. Restoration of a lost metal-binding site: construction of two different copper sites into a subunit of the E. coli cytochrome o quinol oxidase complex. van der Oost, J., Lappalainen, P., Musacchio, A., Warne, A., Lemieux, L., Rumbley, J., Gennis, R.B., Aasa, R., Pascher, T., Malmström, B.G. EMBO J. (1992) [Pubmed]
  3. Mutations conferring resistance to quinol oxidation (Qz) inhibitors of the cyt bc1 complex of Rhodobacter capsulatus. Daldal, F., Tokito, M.K., Davidson, E., Faham, M. EMBO J. (1989) [Pubmed]
  4. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. Castresana, J., Lübben, M., Saraste, M., Higgins, D.G. EMBO J. (1994) [Pubmed]
  5. Nitrogen Fixation Special Feature: Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state. Lowery, T.J., Wilson, P.E., Zhang, B., Bunker, J., Harrison, R.G., Nyborg, A.C., Thiriot, D., Watt, G.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  6. Construction of amperometric immunosensors based on the electrogeneration of a permeable biotinylated polypyrrole film. Ionescu, R.E., Gondran, C., Gheber, L.A., Cosnier, S., Marks, R.S. Anal. Chem. (2004) [Pubmed]
  7. Videomicroscopic demonstration of defective cholinergic arteriolar vasodilation in atherosclerotic rabbit. Yamamoto, H., Bossaller, C., Cartwright, J., Henry, P.D. J. Clin. Invest. (1988) [Pubmed]
  8. X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. Rodrigues, M.L., Oliveira, T.F., Pereira, I.A., Archer, M. EMBO J. (2006) [Pubmed]
  9. An archaebacterial terminal oxidase combines core structures of two mitochondrial respiratory complexes. Lübben, M., Kolmerer, B., Saraste, M. EMBO J. (1992) [Pubmed]
  10. Experimental support for the "E pathway hypothesis" of coupled transmembrane e- and H+ transfer in dihemic quinol:fumarate reductase. Lancaster, C.R., Sauer, U.S., Gross, R., Haas, A.H., Graf, J., Schwalbe, H., Mäntele, W., Simon, J., Madej, M.G. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Size of the amino acid side chain at position 158 of cytochrome b is critical for an active cytochrome bc1 complex and for photosynthetic growth of Rhodobacter capsulatus. Atta-Asafo-Adjei, E., Daldal, F. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  12. Increase of sister chromatid exchanges and perturbations of cell division kinetics in human lymphocytes by benzene metabolites. Morimoto, K., Wolff, S. Cancer Res. (1980) [Pubmed]
  13. Modification by catechol and resorcinol of upper digestive tract carcinogenesis in rats treated with methyl-N-amylnitrosamine. Yamaguchi, S., Hirose, M., Fukushima, S., Hasegawa, R., Ito, N. Cancer Res. (1989) [Pubmed]
  14. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. Santana, M., Kunst, F., Hullo, M.F., Rapoport, G., Danchin, A., Glaser, P. J. Biol. Chem. (1992) [Pubmed]
  15. Probing substrate binding site of the Escherichia coli quinol oxidases using synthetic ubiquinol analogues. Sakamoto, K., Miyoshi, H., Takegami, K., Mogi, T., Anraku, Y., Iwamura, H. J. Biol. Chem. (1996) [Pubmed]
  16. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Vos, M.H., Borisov, V.B., Liebl, U., Martin, J.L., Konstantinov, A.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  17. Reaction of the Escherichia coli quinol oxidase cytochrome bo3 with dioxygen: the role of a bound ubiquinone molecule. Puustinen, A., Verkhovsky, M.I., Morgan, J.E., Belevich, N.P., Wikstrom, M. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  18. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Venugopal, R., Jaiswal, A.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  19. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Moran, J.L., Siegel, D., Ross, D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  20. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Irons, R.D., Stillman, W.S., Colagiovanni, D.B., Henry, V.A. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  21. Induced differentiation of HL-60 promyelocytic leukemia cells to monocyte/macrophages is inhibited by hydroquinone, a hematotoxic metabolite of benzene. Oliveira, N.L., Kalf, G.F. Blood (1992) [Pubmed]
  22. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Kolachana, P., Subrahmanyam, V.V., Meyer, K.B., Zhang, L., Smith, M.T. Cancer Res. (1993) [Pubmed]
  23. Pathogenic roles for fungal melanins. Jacobson, E.S. Clin. Microbiol. Rev. (2000) [Pubmed]
  24. Potentiation of proton transfer function by electrostatic interactions in photosynthetic reaction centers from Rhodobacter sphaeroides: First results from site-directed mutation of the H subunit. Takahashi, E., Wraight, C.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Erexson, G.L., Wilmer, J.L., Kligerman, A.D. Cancer Res. (1985) [Pubmed]
  26. Avarol-induced DNA strand breakage in vitro and in Friend erythroleukemia cells. Müller, W.E., Sladić, D., Zahn, R.K., Bässler, K.H., Dogović, N., Gerner, H., Gasić, M.J., Schröder, H.C. Cancer Res. (1987) [Pubmed]
  27. Elucidation of thioredoxin as a molecular target for antitumor quinols. Bradshaw, T.D., Matthews, C.S., Cookson, J., Chew, E.H., Shah, M., Bailey, K., Monks, A., Harris, E., Westwell, A.D., Wells, G., Laughton, C.A., Stevens, M.F. Cancer Res. (2005) [Pubmed]
  28. Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco, a Homologue of the Yeast Mitochondrial Protein Sco1p. Andruzzi, L., Nakano, M., Nilges, M.J., Blackburn, N.J. J. Am. Chem. Soc. (2005) [Pubmed]
  29. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Ma, Q., Kinneer, K., Ye, J., Chen, B.J. Mol. Pharmacol. (2003) [Pubmed]
  30. p-Benzoquinone, a reactive metabolite of benzene, prevents the processing of pre-interleukins-1 alpha and -1 beta to active cytokines by inhibition of the processing enzymes, calpain, and interleukin-1 beta converting enzyme. Kalf, G.F., Renz, J.F., Niculescu, R. Environ. Health Perspect. (1996) [Pubmed]
  31. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Curto, E.V., Kwong, C., Hermersdörfer, H., Glatt, H., Santis, C., Virador, V., Hearing, V.J., Dooley, T.P. Biochem. Pharmacol. (1999) [Pubmed]
  32. Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Takahashi, D.K., Dinday, M.T., Barbaro, N.M., Baraban, S.C. Epilepsia (2004) [Pubmed]
  33. Potentiation of DNA adduct formation in HL-60 cells by combinations of benzene metabolites. Lévay, G., Bodell, W.J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  34. Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Das, T.K., Gomes, C.M., Teixeira, M., Rousseau, D.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  35. Determination of the ligands of the low spin heme of the cytochrome o ubiquinol oxidase complex using site-directed mutagenesis. Lemieux, L.J., Calhoun, M.W., Thomas, J.W., Ingledew, W.J., Gennis, R.B. J. Biol. Chem. (1992) [Pubmed]
  36. The toxicology of hydroquinone--relevance to occupational and environmental exposure. DeCaprio, A.P. Crit. Rev. Toxicol. (1999) [Pubmed]
 
WikiGenes - Universities