Iron-independent neuronal expression of transferrin receptor mRNA in the rat.
Neuronal transferrin receptor protein expression is highly upregulated widely in CNS following iron deficiency. Using the medial habenular nucleus as a model of neuronal transferrin receptor mRNA expression, the present study examined 17-day-old rats subjected to variations in dietary iron. Changing the iron availability resulted in alterations in plasma and cerebrospinal fluid (CSF) levels of transferrin and iron. The iron-binding capacity of transferrin in CSF was exceeded in normal and iron-overloaded rats. In spite of a lowering of the concentration of brain iron by approximately 22% in iron-deficient rats, neuronal transferrin receptor mRNA was not affected when measured by quantitative densitometry. Brain iron and neuronal transferrin receptor mRNA expression was unaltered in iron overloaded rats. The absence of a rise in transferrin receptor mRNA during iron deficiency suggests that neuronal transferrin receptor mRNA expression is regulated by another mechanism than the post-transcriptional regulation mechanism, which has been attributed to cells of non-neural tissue.[1]References
- Iron-independent neuronal expression of transferrin receptor mRNA in the rat. Moos, T., Oates, P.S., Morgan, E.H. Brain Res. Mol. Brain Res. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg