The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation.

Prolonged exposure of 3T3-L1 adipocytes to insulin increases GLUT1 protein content while diminishing GLUT4. These changes arise in part from changes in mRNA transcription. Here we examined whether there are also specific effects of insulin on GLUT1 and GLUT4 mRNA translation. Insulin enhanced association of GLUT1 mRNA with polyribosomes and decreased association with monosomes, suggesting increased translation. Conversely, insulin arrested the majority of GLUT4 transcripts in monosomes. Insulin inactivates the translational suppressor eukaryotic initiation factor 4E-binding protein-1 (4E-BP1) through the mammalian target of rapamycin (mTOR). Hence, we examined the effect of rapamycin on GLUT1 mRNA translation and protein expression. Rapamycin abrogated the insulin-mediated increase in GLUT1 protein synthesis through partial inhibition of GLUT1 mRNA translation and partial inhibition of the rise in GLUT1 mRNA. 4E-BP1 inhibited GLUT1 mRNA translation in vitro. Because phosphatidylinositol 3-kinase ( PI3K) and protein kinase B ( PKB), in concert with mTOR, inactivate 4E-BP1, we explored their role in GLUT1 protein expression. Cotransfection of cytomegalovirus promoter-driven, hemagglutinin epitope-tagged GLUT1 with dominant inhibitory mutants of PI3K or PKB inhibited the insulin-elicited increase in hemagglutinin-tagged GLUT1 protein. These results unravel the opposite effects of insulin on GLUT1 and GLUT4 mRNA translation. Increased GLUT1 mRNA translation appears to occur via the PI3K/ PKB/mTOR/4E-BP1 cascade.[1]

References

 
WikiGenes - Universities