The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Eif4ebp1  -  eukaryotic translation initiation factor...

Mus musculus

Synonyms: 4E-BP1, 4e-bp1, AA959816, Eukaryotic translation initiation factor 4E-binding protein 1, PHAS-I, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Eif4ebp1


High impact information on Eif4ebp1


Biological context of Eif4ebp1


Anatomical context of Eif4ebp1


Associations of Eif4ebp1 with chemical compounds


Enzymatic interactions of Eif4ebp1

  • Strikingly, upon induction of eIF4E, 4E-BP1 became dephosphorylated and the extent of dephosphorylation was proportional to the expression level of eIF4E [20].

Regulatory relationships of Eif4ebp1


Other interactions of Eif4ebp1

  • Activation of a temperature-sensitive form of mouse p53 in murine erythroleukaemia cells rapidly inhibits protein synthesis and causes early dephosphorylation and cleavage of protein synthesis initiation factor eIF4GI and the eIF4E-binding protein 4E-BP1 [21].
  • Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53 [21].
  • The considerable residual differentiation in the presence of rapamycin, despite the complete blockade of p70 S6K activation, prompted us to measure the phosphorylation of another rapamycin-sensitive protein, eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1) [26].
  • CONCLUSIONS: In proximal tubular epithelial cells, insulin augments 4E-BP1 phosphorylation, which is PI 3-kinase and mTOR dependent [9].
  • Cleavage of 4E-BP1 was inhibited by treatment of the cells with Z-VAD.FMK, indicating it is caspase-dependent [27].

Analytical, diagnostic and therapeutic context of Eif4ebp1


  1. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. Le Bacquer, O., Petroulakis, E., Paglialunga, S., Poulin, F., Richard, D., Cianflone, K., Sonenberg, N. J. Clin. Invest. (2007) [Pubmed]
  2. Biochemical correlates of mTOR inhibition by the rapamycin ester CCI-779 and tumor growth inhibition. Dudkin, L., Dilling, M.B., Cheshire, P.J., Harwood, F.C., Hollingshead, M., Arbuck, S.G., Travis, R., Sausville, E.A., Houghton, P.J. Clin. Cancer Res. (2001) [Pubmed]
  3. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Nagai, K., Matsubara, T., Mima, A., Sumi, E., Kanamori, H., Iehara, N., Fukatsu, A., Yanagita, M., Nakano, T., Ishimoto, Y., Kita, T., Doi, T., Arai, H. Kidney Int. (2005) [Pubmed]
  4. Disruption of the gene encoding the mitogen-regulated translational modulator PHAS-I in mice. Blackshear, P.J., Stumpo, D.J., Carballo, E., Lawrence, J.C. J. Biol. Chem. (1997) [Pubmed]
  5. HIV antiretroviral agents inhibit protein synthesis and decrease ribosomal protein S6 and 4EBP1 phosphorylation in C2C12 myocytes. Hong-Brown, L.Q., Brown, C.R., Lang, C.H. AIDS Res. Hum. Retroviruses (2005) [Pubmed]
  6. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Tsukiyama-Kohara, K., Poulin, F., Kohara, M., DeMaria, C.T., Cheng, A., Wu, Z., Gingras, A.C., Katsume, A., Elchebly, M., Spiegelman, B.M., Harper, M.E., Tremblay, M.L., Sonenberg, N. Nat. Med. (2001) [Pubmed]
  7. The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Fox, C.J., Hammerman, P.S., Cinalli, R.M., Master, S.R., Chodosh, L.A., Thompson, C.B. Genes Dev. (2003) [Pubmed]
  8. mu-Opioid receptor activates signaling pathways implicated in cell survival and translational control. Polakiewicz, R.D., Schieferl, S.M., Gingras, A.C., Sonenberg, N., Comb, M.J. J. Biol. Chem. (1998) [Pubmed]
  9. Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Bhandari, B.K., Feliers, D., Duraisamy, S., Stewart, J.L., Gingras, A.C., Abboud, H.E., Choudhury, G.G., Sonenberg, N., Kasinath, B.S. Kidney Int. (2001) [Pubmed]
  10. Opposite translational control of GLUT1 and GLUT4 glucose transporter mRNAs in response to insulin. Role of mammalian target of rapamycin, protein kinase b, and phosphatidylinositol 3-kinase in GLUT1 mRNA translation. Taha, C., Liu, Z., Jin, J., Al-Hasani, H., Sonenberg, N., Klip, A. J. Biol. Chem. (1999) [Pubmed]
  11. Myogenic differentiation is dependent on both the kinase function and the N-terminal sequence of mammalian target of rapamycin. Shu, L., Zhang, X., Houghton, P.J. J. Biol. Chem. (2002) [Pubmed]
  12. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Scott, P.H., Brunn, G.J., Kohn, A.D., Roth, R.A., Lawrence, J.C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  13. Regulation of protein synthesis by leucine starvation involves distinct mechanisms in mouse C2C12 myoblasts and myotubes. Talvas, J., Obled, A., Fafournoux, P., Mordier, S. J. Nutr. (2006) [Pubmed]
  14. A microtiter plate assay for assessing the interaction of eukaryotic initiation factor eIF4E with eIF4G and eIF4E binding protein-1. Kimball, S.R., Horetsky, R.L., Jefferson, L.S. Anal. Biochem. (2004) [Pubmed]
  15. Leucine activates pancreatic translational machinery in rats and mice through mTOR independently of CCK and insulin. Sans, M.D., Tashiro, M., Vogel, N.L., Kimball, S.R., D'Alecy, L.G., Williams, J.A. J. Nutr. (2006) [Pubmed]
  16. Insulin and IGF-I stimulate the formation of the eukaryotic initiation factor 4F complex and protein synthesis in C2C12 myotubes independent of availability of external amino acids. Shen, W.H., Boyle, D.W., Wisniowski, P., Bade, A., Liechty, E.A. J. Endocrinol. (2005) [Pubmed]
  17. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Feliers, D., Gorin, Y., Ghosh-Choudhury, G., Abboud, H.E., Kasinath, B.S. Am. J. Physiol. Renal Physiol. (2006) [Pubmed]
  18. Activation of the mTOR signalling pathway is required for pancreatic growth in protease-inhibitor-fed mice. Crozier, S.J., Sans, M.D., Guo, L., D'Alecy, L.G., Williams, J.A. J. Physiol. (Lond.) (2006) [Pubmed]
  19. Polyamines regulate eukaryotic initiation factor 4E-binding protein 1 gene transcription. Stephenson, A.H., Christian, J.F., Seidel, E.R. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  20. Translational homeostasis: eukaryotic translation initiation factor 4E control of 4E-binding protein 1 and p70 S6 kinase activities. Khaleghpour, K., Pyronnet, S., Gingras, A.C., Sonenberg, N. Mol. Cell. Biol. (1999) [Pubmed]
  21. Regulation of the phosphorylation and integrity of protein synthesis initiation factor eIF4GI and the translational repressor 4E-BP1 by p53. Constantinou, C., Clemens, M.J. Oncogene (2005) [Pubmed]
  22. Control of PHAS-I by insulin in 3T3-L1 adipocytes. Synthesis, degradation, and phosphorylation by a rapamycin-sensitive and mitogen-activated protein kinase-independent pathway. Lin, T.A., Kong, X., Saltiel, A.R., Blackshear, P.J., Lawrence, J.C. J. Biol. Chem. (1995) [Pubmed]
  23. Prolactin and insulin synergize to regulate the translation modulator PHAS-I via mitogen-activated protein kinase-independent but wortmannin- and rapamycin-sensitive pathway. Barash, I. Mol. Cell. Endocrinol. (1999) [Pubmed]
  24. Construction and characterization of a conditionally active version of the serine/threonine kinase Akt. Kohn, A.D., Barthel, A., Kovacina, K.S., Boge, A., Wallach, B., Summers, S.A., Birnbaum, M.J., Scott, P.H., Lawrence, J.C., Roth, R.A. J. Biol. Chem. (1998) [Pubmed]
  25. Control of PHAS-I phosphorylation in 3T3-L1 adipocytes: effects of inhibiting protein phosphatases and the p70S6K signalling pathway. Lin, T.A., Lawrence, J.C. Diabetologia (1997) [Pubmed]
  26. Inhibition of insulin signaling and adipogenesis by rapamycin: effect on phosphorylation of p70 S6 kinase vs eIF4E-BP1. El-Chaâr, D., Gagnon, A., Sorisky, A. Int. J. Obes. Relat. Metab. Disord. (2004) [Pubmed]
  27. DNA-damaging agents cause inactivation of translational regulators linked to mTOR signalling. Tee, A.R., Proud, C.G. Oncogene (2000) [Pubmed]
  28. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Wan, X., Shen, N., Mendoza, A., Khanna, C., Helman, L.J. Neoplasia (2006) [Pubmed]
  29. Transcriptional profile of a myotube starvation model of atrophy. Stevenson, E.J., Koncarevic, A., Giresi, P.G., Jackman, R.W., Kandarian, S.C. J. Appl. Physiol. (2005) [Pubmed]
  30. Analysis of the interactions of Nrf-2, PMF-1, and CSN-7 with the 5'-flanking sequence of the mouse 4E-BP1 gene. Stephenson, A.H., Seidel, E.R. Life Sci. (2006) [Pubmed]
  31. Characterization of an epithelial cell line from bovine mammary gland. German, T., Barash, I. In Vitro Cell. Dev. Biol. Anim. (2002) [Pubmed]
WikiGenes - Universities