Synthesis and evaluation of an aromatic polymer-coated zirconia for reversed-phase liquid chromatography.
We synthesized a novel aromatic polymer-coated zirconia-based RPLC stationary phase by chemical adsorption of a copolymer of chloromethylstyrene and diethoxymethylvinylsilane onto zirconia ( CMS/VMS-ZrO2). Characterization of the pore structure of the support by nitrogen porosimetry and inverse size-exclusion chromatography indicates that CMS/VMS-ZrO2 maintains the well-defined pore structure of the base material. Flow studies show that CMS/VMS-ZrO2 has good mass transfer characteristics. The reversed-phase retention characteristics of the new support are comparable to those of conventional silica-bonded phases. We have also evaluated the mechanical, thermal, and pH stability of CMS/VMS-ZrO2. The results show that CMS/VMS-ZrO2 is stable over a very wide range of pH (pH = 1-13) and at temperatures as high as 160 degrees C. Chromatographic separations of some low molecular weight aromatic analytes on CMS/VMS-ZrO2 and octadecyl-bonded silica phases indicate that there are some subtle but significant differences in the chromatographic selectivity of these two types of phases.[1]References
- Synthesis and evaluation of an aromatic polymer-coated zirconia for reversed-phase liquid chromatography. Zhao, J., Carr, P.W. Anal. Chem. (1999) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg