The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Peptides corresponding to the N and C termini of IkappaB-alpha, -beta, and -epsilon as probes of the two catalytic subunits of IkappaB kinase, IKK-1 and IKK-2.

The signal-inducible phosphorylation of serines 32 and 36 of IkappaB-alpha is the key step in regulating the subsequent ubiquitination and proteolysis of IkappaB-alpha, which then releases NF-kappaB to promote gene transcription. The multisubunit IkappaB kinase (msIKK) responsible for this phosphorylation contains two catalytic subunits, termed IKK-1 and IKK-2. Using recombinant IKK-2, a kinetic pattern consistent with a random, sequential binding mechanism was observed with the use of a peptide corresponding to amino acids 26-42 of IkappaB-alpha. Values of 313 microM, 15.5 microM, and 1.7 min(-1) were obtained for K(peptide), K(ATP), and k(cat), respectively. The value of alpha, a factor by which binding of one substrate changes the dissociation constant for the other substrate, was determined to be 0. 2. Interestingly, the recombinant IKK-1 subunit gave similar values for alpha and K(ATP), but values of 1950 microM and 0.016 min(-1) were calculated for K(peptide) and k(cat), respectively. This suggests that the IKK-2 catalytic subunit provides nearly all of the catalytic activity of the msIKK complex with the IKK-1 subunit providing little contribution to catalysis. Using peptides corresponding to different regions of IkappaB-alpha within amino acids 21-47, it was shown that amino acids 31-37 provide most binding interactions (-4.7 kcal/ mol of binding free energy) of the full-length IkappaB-alpha (-7.9 kcal/ mol) with the IKK-2. This is consistent with the observation that IKK-2 is able to phosphorylate the IkappaB-beta and IkappaB-epsilon proteins, which have consensus phosphorylation sites nearly identical to that of amino acids 31-37 of IkappaB-alpha. A peptide corresponding to amino acids 279-303 in the C-terminal domain of IkappaB-alpha was unable to activate IKK-2 to phosphorylate an N-terminal peptide, which is in contrast to the results observed with the msIKK. Moreover, the IKK-2 catalyzes the phosphorylation of the full-length IkappaB-alpha and the amino acid 26-42 peptide with nearly equal efficiency, while the msIKK catalyzes the phosphorylation of the full-length IkappaB-alpha 25,000 times more efficiently than the 26-42 peptide. Therefore, the C terminus of IkappaB-alpha is important in activating the msIKK through interactions with subunits other than the IKK-2.[1]

References

 
WikiGenes - Universities