The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

D-ribose-5-phosphate isomerase from spinach: heterologous overexpression, purification, characterization, and site-directed mutagenesis of the recombinant enzyme.

A cDNA encoding spinach chloroplastic ribose-5-phosphate isomerase (RPI) was cloned and overexpressed in Escherichia coli, and a purification scheme for the recombinant enzyme was developed. The purified recombinant RPI is a homodimer of 25-kDa subunits and shows kinetic properties similar to those of the homodimeric enzyme isolated from spinach leaves (A. C. Rutner, 1970, Biochemistry 9, 178-184). Phosphate, used as a buffer in previous studies, is a competitive inhibitor of RPI with a K(i) of 7.9 mM. D-Arabinose 5-phosphate is an effective inhibitor, while D-xylulose-5 phosphate is not, indicating that the configuration at carbon-3 contributes to substrate recognition. Although D-arabinose 5-phosphate binds to RPI, it is not isomerized, demonstrating that the configuration at carbon-2 is crucial for catalysis. Alignment of RPI sequences from diverse sources showed that only 11 charged amino acid residues of the 236-residue subunit are conserved. The possible function of four of these residues was examined by site-directed mutagenesis. D87A, K100A, and D90A mutants show greatly diminished k(cat) values (0. 0012, 0.074, and 0.38% of the wild type, respectively), while E91A retains substantial activity. Only insignificant or moderate changes in K(m) of D-ribose 5-phosphate are observed for D87A, K100A, and D90A, indicating a direct or indirect catalytic role of the targeted residues.[1]


WikiGenes - Universities