The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Changing distribution patterns of synaptophysin-immunoreactive structures in the human dorsal striatum of the fetal brain.

Within the striatum two compartments, matrix and patches, can be distinguished by differences in the expression of neuroactive substances, afferent and efferent connections and time of neurogenesis. The present study was done to demonstrate the pattern of synaptophysin ( SYN) expression which is indicative of synaptogenesis in the human fetal striatum (15th-32nd weeks of gestation) with special reference to developmental changes. From the 15th to the 22nd gestational weeks an intense diffuse SYN immunolabelling of striatal patches is observed. In the matrix SYN-immunoreactive fiber bundles are seen until the 20th week. Thereafter, the matrix is nearly devoid of SYN-immunoreactive structures. From the 28th week of gestation the matrix contains diffuse SYN immunoreactivity which gradually becomes as intense as that of the patches. The latter, thus, can no longer be delineated in the 30th week. The results show that fibrous SYN immunolabelling most probably indicating intra-axonal transport of synaptic vesicles can only be observed during the first half of gestation. Moreover, it becomes obvious that the patch compartment can selectively be visualized by anti- SYN until the 28th week. This pattern may correspond to the early dopaminergic innervation from the substantia nigra which is known to reach the developing patches. From the 28th week a transition from patchy to diffuse immunolabelling is seen. The increase in matrix labelling may be due to the occurrence of new neuronal contacts. The changeover from patchy to homogeneous SYN immunolabelling takes place distinctly earlier than changes in the distribution of other neuroactive substances described before.[1]

References

 
WikiGenes - Universities