Crystal structures of Escherichia coli phytase and its complex with phytate.
Phytases catalyze the hydrolysis of phytate and are able to improve the nutritional quality of phytate-rich diets. Escherichia coli phytase, a member of the histidine acid phosphatase family has the highest specific activity of all phytases characterized. The crystal structure of E. coli phytase has been determined by a two-wavelength anomalous diffraction method using the exceptionally strong anomalous scattering of tungsten. Despite a lack of sequence similarity, the structure closely resembles the overall fold of other histidine acid phosphatases. The structure of E. coli phytase in complex with phytate, the preferred substrate, reveals the binding mode and substrate recognition. The binding is also accompanied by conformational changes which suggest that substrate binding enhances catalysis by increasing the acidity of the general acid.[1]References
- Crystal structures of Escherichia coli phytase and its complex with phytate. Lim, D., Golovan, S., Forsberg, C.W., Jia, Z. Nat. Struct. Biol. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg