The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Phytate     (2,3,4,5,6- pentaphosphonooxycyclohexyl) oxy...

Synonyms: Alkovert, Exfoderm, Phyliance, Phytine, Alkalovert, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Phytate


High impact information on Phytate


Chemical compound and disease context of Phytate


Biological context of Phytate

  • We have developed transgenic mouse models to determine whether endogenous expression of phytase transgenes in the digestive tract of monogastric animals can increase the bioavailability of dietary phytate, a major but indigestible form of dietary phosphorus [15].
  • Engineering crop plants to produce a heterologous phytase improves phosphate bioavailability and reduces phytic acid excretion [16].
  • Phytases catalyze the hydrolysis of phytate and are able to improve the nutritional quality of phytate-rich diets [1].
  • The development of 'low phytate' grain and legume genotypes could help advance our understanding of this biology, and when used in foods and feeds might help to reduce human malnutrition and reduce animal waste phosphorus [17].
  • Binding of three additional calcium ions to low-affinity calcium binding sites at the top of the molecule turns on the catalytic activity of the enzyme by converting the highly negatively charged cleft into a favorable environment for the binding of phytate [18].

Anatomical context of Phytate


Associations of Phytate with other chemical compounds


Gene context of Phytate


Analytical, diagnostic and therapeutic context of Phytate

  • SDS-PAGE analysis of proteins immunoprecipitated from extracts of [35S]methionine labeled Schwann cells demonstrated that the antisera precipitated an HSPG species that was present in the pool of proteins released by PI-PLC, with smaller amounts present in phytic acid extracts [20].
  • Our results define a commercially viable strategy for the genetic engineering of phytate-free grain and provide insights into the role of inositol polyphosphate kinases in phosphate signaling biology [32].
  • Titration of the carboxyhemoglobin tetramer-dimer equilibrium by inositol hexaphosphate [33].
  • Different optical activity was also measured in the carbomonoxy derivatives of the beta subunits of hemoglobin A and S, the respective deoxy derivatives showed different circular dichroism spectra only in the presence of inositol hexaphosphate [34].
  • After the addition of inositol hexaphosphate, the alpha subunits reacted about 1.5 times faster than the beta subunits in the first ligation step, but the overall rate of the first CO binding step was unchanged [35].


  1. Crystal structures of Escherichia coli phytase and its complex with phytate. Lim, D., Golovan, S., Forsberg, C.W., Jia, Z. Nat. Struct. Biol. (2000) [Pubmed]
  2. Preventive potential of wheat bran fractions against experimental colon carcinogenesis: implications for human colon cancer prevention. Reddy, B.S., Hirose, Y., Cohen, L.A., Simi, B., Cooma, I., Rao, C.V. Cancer Res. (2000) [Pubmed]
  3. Faecal phytic acid and its relation to other putative markers of risk for colorectal cancer. Owen, R.W., Weisgerber, U.M., Spiegelhalder, B., Bartsch, H. Gut (1996) [Pubmed]
  4. In vivo suppression of hormone-refractory prostate cancer growth by inositol hexaphosphate: induction of insulin-like growth factor binding protein-3 and inhibition of vascular endothelial growth factor. Singh, R.P., Sharma, G., Mallikarjuna, G.U., Dhanalakshmi, S., Agarwal, C., Agarwal, R. Clin. Cancer Res. (2004) [Pubmed]
  5. Effects of milk and milk components on calcium, magnesium, and trace element absorption during infancy. Lönnerdal, B. Physiol. Rev. (1997) [Pubmed]
  6. A possible docking and fusion particle for synaptic transmission. Schiavo, G., Gmachl, M.J., Stenbeck, G., Söllner, T.H., Rothman, J.E. Nature (1995) [Pubmed]
  7. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Odom, A.R., Stahlberg, A., Wente, S.R., York, J.D. Science (2000) [Pubmed]
  8. Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Alcázar-Román, A.R., Tran, E.J., Guo, S., Wente, S.R. Nat. Cell Biol. (2006) [Pubmed]
  9. The protein storage vacuole: a unique compound organelle. Jiang, L., Phillips, T.E., Hamm, C.A., Drozdowicz, Y.M., Rea, P.A., Maeshima, M., Rogers, S.W., Rogers, J.C. J. Cell Biol. (2001) [Pubmed]
  10. A model for the radionuclide measurement of ascitic fluid volumes. Kaplan, W.D., Davis, M.A., Uren, R.F., Wisotsky, T., LaTegola, M. J. Nucl. Med. (1978) [Pubmed]
  11. Inositol and inositol hexaphosphate suppress cell proliferation and tumor formation in CD-1 mice. Shamsuddin, A.M., Ullah, A., Chakravarthy, A.K. Carcinogenesis (1989) [Pubmed]
  12. An androgen-independent androgen receptor function protects from inositol hexakisphosphate toxicity in the PC3/PC3(AR) prostate cancer cell lines. Diallo, J.S., Péant, B., Lessard, L., Delvoye, N., Le Page, C., Mes-Masson, A.M., Saad, F. Prostate (2006) [Pubmed]
  13. Neutrophil accumulation promotes intimal hyperplasia after photochemically induced arterial injury in mice. Shimazawa, M., Watanabe, S., Kondo, K., Hara, H., Nakashima, M., Umemura, K. Eur. J. Pharmacol. (2005) [Pubmed]
  14. Role of P-selectin in the early stage of the Arthus reaction. Ohnishi, M., Koike, H., Kawamura, N., Tojo, S.J., Hayashi, M., Morooka, S. Immunopharmacology (1996) [Pubmed]
  15. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Golovan, S.P., Hayes, M.A., Phillips, J.P., Forsberg, C.W. Nat. Biotechnol. (2001) [Pubmed]
  16. Engineering crop plants: getting a handle on phosphate. Brinch-Pedersen, H., Sørensen, L.D., Holm, P.B. Trends Plant Sci. (2002) [Pubmed]
  17. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution. Raboy, V. Trends Plant Sci. (2001) [Pubmed]
  18. Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Ha, N.C., Oh, B.C., Shin, S., Kim, H.J., Oh, T.K., Kim, Y.O., Choi, K.Y., Oh, B.H. Nat. Struct. Biol. (2000) [Pubmed]
  19. Tight folding of acidic fibroblast growth factor prevents its translocation to the cytosol with diphtheria toxin as vector. Wiedlocha, A., Madshus, I.H., Mach, H., Middaugh, C.R., Olsnes, S. EMBO J. (1992) [Pubmed]
  20. Identification of a lipid-anchored heparan sulfate proteoglycan in Schwann cells. Carey, D.J., Stahl, R.C. J. Cell Biol. (1990) [Pubmed]
  21. Long-term physiological effects of enhanced O2 release by inositol hexaphosphate-loaded erythrocytes. Teisseire, B., Ropars, C., Villeréal, M.C., Nicolau, C. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  22. Inositol hexakisphosphate promotes dynamin I- mediated endocytosis. Høy, M., Efanov, A.M., Bertorello, A.M., Zaitsev, S.V., Olsen, H.L., Bokvist, K., Leibiger, B., Leibiger, I.B., Zwiller, J., Berggren, P.O., Gromada, J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  23. Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Lemtiri-Chlieh, F., MacRobbie, E.A., Brearley, C.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  24. Allosteric effectors influence the tetramer stability of both R- and T-states of hemoglobin A. Schay, G., Smeller, L., Tsuneshige, A., Yonetani, T., Fidy, J. J. Biol. Chem. (2006) [Pubmed]
  25. Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate inhibit inositol-1,3,4,5-tetrakisphosphate 3-phosphatase in rat parotid glands. Hughes, P.J., Shears, S.B. J. Biol. Chem. (1990) [Pubmed]
  26. Phytic acid. A natural antioxidant. Graf, E., Empson, K.L., Eaton, J.W. J. Biol. Chem. (1987) [Pubmed]
  27. The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase. Verbsky, J.W., Wilson, M.P., Kisseleva, M.V., Majerus, P.W., Wente, S.R. J. Biol. Chem. (2002) [Pubmed]
  28. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. Miller, A.L., Suntharalingam, M., Johnson, S.L., Audhya, A., Emr, S.D., Wente, S.R. J. Biol. Chem. (2004) [Pubmed]
  29. Molecular definition of a novel inositol polyphosphate metabolic pathway initiated by inositol 1,4,5-trisphosphate 3-kinase activity in Saccharomyces cerevisiae. Seeds, A.M., Bastidas, R.J., York, J.D. J. Biol. Chem. (2005) [Pubmed]
  30. Bone morphogenetic protein-7 stimulates initial dendritic growth in sympathetic neurons through an intracellular fibroblast growth factor signaling pathway. Horbinski, C., Stachowiak, E.K., Chandrasekaran, V., Miuzukoshi, E., Higgins, D., Stachowiak, M.K. J. Neurochem. (2002) [Pubmed]
  31. Inositol hexaphosphate represses telomerase activity and translocates TERT from the nucleus in mouse and human prostate cancer cells via the deactivation of Akt and PKCalpha. Jagadeesh, S., Banerjee, P.P. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  32. Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Stevenson-Paulik, J., Bastidas, R.J., Chiou, S.T., Frye, R.A., York, J.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  33. Titration of the carboxyhemoglobin tetramer-dimer equilibrium by inositol hexaphosphate. White, S.L. J. Biol. Chem. (1976) [Pubmed]
  34. Effect of the beta6 Glu replaced by Val mutation on the optical activity of hemoglobin S and of its beta subunits. Fronticelli, C. J. Biol. Chem. (1978) [Pubmed]
  35. The association reaction between hemoglobin and carbon monoxide as studied by the isolation of the intermediates. Implications on the mechanism of cooperativity. Perrella, M., Davids, N., Rossi-Bernardi, L. J. Biol. Chem. (1992) [Pubmed]
WikiGenes - Universities