Protein folding and unfolding on a complex energy landscape.
Recent theories of protein folding suggest that individual proteins within a large ensemble may follow different routes in conformation space from the unfolded state toward the native state and vice versa. Herein, we introduce a new type of kinetics experiment that shows how different unfolding pathways can be selected by varying the initial reaction conditions. The relaxation kinetics of the major cold shock protein of Escherichia coli (CspA) in response to a laser-induced temperature jump are exponential for small temperature jumps, indicative of folding through a two-state mechanism. However, for larger jumps, the kinetics become strongly nonexponential, implying the existence of multiple unfolding pathways. We provide evidence that both unfolding across an energy barrier and diffusive downhill unfolding can occur simultaneously in the same ensemble and provide the experimental requirements for these to be observed.[1]References
- Protein folding and unfolding on a complex energy landscape. Leeson, D.T., Gai, F., Rodriguez, H.M., Gregoret, L.M., Dyer, R.B. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg