The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Adverse effects of an active fragment of parathyroid hormone on rat hippocampal organotypic cultures.

Adverse effects of an active fragment of parathyroid hormone (PTH(1 - 34)), a blood Ca(2+) level-regulating hormone, were examined using rat hippocampal slices in organotypic culture. Exposure of cultured slice preparations to 0.1 microM PTH(1 - 34) for 60 min resulted in a gradual increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)); this effect was most obvious in the apical dendritic region of CA1 subfield. When PTH(1 - 34) at a lower concentration (1 nM) was added to the culture medium and its toxic effects examined using a propidium iodide intercalation method, significant toxicity was seen 3 days after exposure and increased with time. Cells in the CA1 region seemed more vulnerable to the hormone than cells in other regions. At 1 week of exposure, the toxic effects were dose-dependent over the range of 0.1 pM to 0.1 microM, the minimum effective dose being 10 pM. The adverse effects were not induced either by the inactive fragment, PTH(39 - 84), or by an active fragment of PTH-related peptide (PTHrP(1 - 34)), an intrinsic ligand of the brain PTH receptor. The PTH(1 - 34)-induced adverse effects were significantly inhibited by co-administration of 10 microM nifedipine, an L-type Ca(2+) channel blocker, but not by co-administration of blockers of the other types of Ca(2+) channel. The present study demonstrates that sustained high levels of PTH in the brain might cause degeneration of specific brain regions due to Ca(2+) overloading via activation of dihydropyridine-sensitive Ca(2+) channels, and suggests that PTH may be a risk factor for senile dementia. British Journal of Pharmacology (2000) 129, 21 - 28[1]

References

  1. Adverse effects of an active fragment of parathyroid hormone on rat hippocampal organotypic cultures. Hirasawa, T., Nakamura, T., Mizushima, A., Morita, M., Ezawa, I., Miyakawa, H., Kudo, Y. Br. J. Pharmacol. (2000) [Pubmed]
 
WikiGenes - Universities