The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure and mechanism of 3-deoxy-D-manno-octulosonate 8-phosphate synthase.

3-deoxy-D-manno-octulosonate 8-phosphate (KDO8P) synthase catalyzes the condensation of phosphoenolpyruvate (PEP) with arabinose 5-phosphate (A5P) to form KDO8P and inorganic phosphate. KDO8P is the phosphorylated precursor of 3-deoxy-D-manno-octulosonate, an essential sugar of the lipopolysaccharide of Gram-negative bacteria. The crystal structure of the Escherichia coli KDO8P synthase has been determined by multiple wavelength anomalous diffraction and the model has been refined to 2.4 A (R-factor, 19.9%; R-free, 23.9%). KDO8P synthase is a homotetramer in which each monomer has the fold of a (beta/alpha)(8) barrel. On the basis of the features of the active site, PEP and A5P are predicted to bind with their phosphate moieties 13 A apart such that KDO8P synthesis would proceed via a linear intermediate. A reaction similar to KDO8P synthesis, the condensation of phosphoenolpyruvate, and erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAH7P), is catalyzed by DAH7P synthase. In the active site of DAH7P synthase the two substrates PEP and erythrose 4-phosphate appear to bind in a configuration similar to that proposed for PEP and A5P in the active site of KDO8P synthase. This observation suggests that KDO8P synthase and DAH7P synthase evolved from a common ancestor and that they adopt the same catalytic strategy.[1]

References

  1. Structure and mechanism of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. Radaev, S., Dastidar, P., Patel, M., Woodard, R.W., Gatti, D.L. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities