The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Antimyotonic effects of tocainide enantiomers on skeletal muscle fibers of congenitally myotonic goats.

Tocainide is effective in the symptomatic treatment of myotonic syndromes for its ability to reduce the high frequency discharges of action potentials typical of the disease, by blocking voltage-gated sodium channels. However, its use is restricted by serious side effects. In spite of its chiral structure, tocainide is clinically used as a racemic mixture. Since the optical isomers may differ in their efficacy and toxicity, the present study was aimed at evaluating the antimyotonic activity of the pure R(-) and S(+) enantiomers of tocainide, on the abnormal membrane hyperexcitability of external intercostal muscle fibers of congenitally myotonic goats. The excitability parameters were recorded in vitro by means of the standard two-microelectrode current-clamp technique before and after the addition of the compounds. The R(-) enantiomer of tocainide at concentrations as low as 10 microM potently counteracted the abnormal excitability of myotonic fibers, by increasing the threshold current, and decreasing the latency of the action potential and firing capability. Also, this concentration of R-(-) tocainide almost completely abolished the abnormal spontaneous electrical activity occurring in about 70-80% of the myotonic fiber. The S(+) enantiomer was remarkably less potent since up to 100 microM did not restore the normal excitability pattern. The results show that most of the antimyotonic activity of tocainide resides in the R(-) enantiomer suggesting that its clinical use may allow a significant reduction of the doses and possibly of the side effects.[1]

References

  1. Antimyotonic effects of tocainide enantiomers on skeletal muscle fibers of congenitally myotonic goats. Camerino, D.C., Pierno, S., De Luca, A., Bryant, S.H. Neuromuscul. Disord. (2000) [Pubmed]
 
WikiGenes - Universities