Electron paramagnetic resonance evidence for a novel interconversion of [3Fe-4S](+) and [4Fe-4S](+) clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro.
We report an EPR study of the iron-sulfur enzyme, anaerobic ribonucleotide reductase activase from Lactococcus lactis. The activase (nrdG gene) together with S-adenosyl-L-methionine (AdoMet) give rise to a glycyl radical in the NrdD component. A semi-reduced [4Fe-4S](+) cluster with an axially symmetric EPR signal was produced upon photochemical reduction of the activase. Air exposure of the reduced enzyme gave a [3Fe-4S](+) cluster. The Fe(3)S(4) cluster was convertible to the EPR-active [4Fe-4S](+) cluster by renewed treatment with reducing agents, demonstrating a reversible [3Fe-4S](+)- to-[4Fe-4S](+) cluster conversion without exogenous addition of iron or sulfide. Anaerobic reduction of the activase by a moderate concentration of dithionite also resulted in a semi-reduced [4Fe-4S](+) cluster. Prolonged reduction gave an EPR-silent fully reduced state, which was enzymatically inactive. Both reduced states gave the [3Fe-4S](+) EPR signal after air exposure. The iron-sulfur cluster interconversion was also studied in the presence of AdoMet. The EPR signal of semi-reduced activase-AdoMet had rhombic symmetry and was independent of which reductant was applied, whereas the EPR signal of the [3Fe-4S](+) cluster after air exposure was unchanged. The results indicate that an AdoMet-mediated [4Fe-4S](+) center is the native active species that induces the formation of a glycyl radical in the NrdD component.[1]References
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg