The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lactococcus

  • Here, we developed a highly efficient Escherichia coli genetic assay to determine detailed target site recognition rules for the Lactococcus lactis group II intron Ll.LtrB and to select introns that insert into desired target sites [1].
  • Treatment of murine colitis by Lactococcus lactis secreting interleukin-10 [2].
  • Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro [3].
  • Genetically modified Lactococcus lactis secreting interleukin 10 provides a therapeutic approach for inflammatory bowel disease [4].
  • The discovery and characterization of insertion sequences in Lactobacillus and Lactococcus and the exploitation of heterologous conjugation and transposition systems in the lactic acid bacteria are described [5].

High impact information on Lactococcus

  • To address the mechanism by which group II introns are disseminated, we have studied the bacterial L1.LtrB intron from Lactococcus lactis [6].
  • The Lactococcus lactis group II intron Ll.ltrB is similar to mobile yeast mtDNA group II introns, which encode reverse transcriptase, RNA maturase, and DNA endonuclease activities for site-specific DNA insertion [7].
  • Here, we show that the primary binding site for the maturase (LtrA) encoded by the Lactococcus lactis Ll.LtrB intron is within a region of intron domain IV that includes the start codon of the LtrA ORF [8].
  • We report the engineering of Lactococcus lactis to produce the amino acid L-alanine [9].
  • Here, we identify the major exonuclease in Lactococcus lactis, a Gram-positive organism evolutionarily distant from E. coli, and provide evidence for exonuclease-Chi interactions [10].

Chemical compound and disease context of Lactococcus


Biological context of Lactococcus


Anatomical context of Lactococcus


Gene context of Lactococcus


Analytical, diagnostic and therapeutic context of Lactococcus


  1. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Guo, H., Karberg, M., Long, M., Jones, J.P., Sullenger, B., Lambowitz, A.M. Science (2000) [Pubmed]
  2. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., Remaut, E. Science (2000) [Pubmed]
  3. Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling. Nauta, A., van den Burg, B., Karsens, H., Venema, G., Kok, J. Nat. Biotechnol. (1997) [Pubmed]
  4. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Steidler, L., Neirynck, S., Huyghebaert, N., Snoeck, V., Vermeire, A., Goddeeris, B., Cox, E., Remon, J.P., Remaut, E. Nat. Biotechnol. (2003) [Pubmed]
  5. In vivo genetic systems in lactic acid bacteria. Gasson, M.J. FEMS Microbiol. Rev. (1990) [Pubmed]
  6. Retrotransposition of a bacterial group II intron. Cousineau, B., Lawrence, S., Smith, D., Belfort, M. Nature (2000) [Pubmed]
  7. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G.M., Belfort, M., Lambowitz, A.M. Genes Dev. (1997) [Pubmed]
  8. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Wank, H., SanFilippo, J., Singh, R.N., Matsuura, M., Lambowitz, A.M. Mol. Cell (1999) [Pubmed]
  9. Conversion of Lactococcus lactis from homolactic to homoalanine fermentation through metabolic engineering. Hols, P., Kleerebezem, M., Schanck, A.N., Ferain, T., Hugenholtz, J., Delcour, J., de Vos, W.M. Nat. Biotechnol. (1999) [Pubmed]
  10. Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence. el Karoui, M., Ehrlich, D., Gruss, A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  11. Genetics of lactose utilization in lactic acid bacteria. de Vos, W.M., Vaughan, E.E. FEMS Microbiol. Rev. (1994) [Pubmed]
  12. Structural and kinetic studies of sugar binding to galactose mutarotase from Lactococcus lactis. Thoden, J.B., Kim, J., Raushel, F.M., Holden, H.M. J. Biol. Chem. (2002) [Pubmed]
  13. Membrane topology of the sodium ion-dependent citrate carrier of Klebsiella pneumoniae. Evidence for a new structural class of secondary transporters. van Geest, M., Lolkema, J.S. J. Biol. Chem. (1996) [Pubmed]
  14. Membrane potential-generating malate (MleP) and citrate (CitP) transporters of lactic acid bacteria are homologous proteins. Substrate specificity of the 2-hydroxycarboxylate transporter family. Bandell, M., Ansanay, V., Rachidi, N., Dequin, S., Lolkema, J.S. J. Biol. Chem. (1997) [Pubmed]
  15. Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. van Rooijen, R.J., de Vos, W.M. J. Biol. Chem. (1990) [Pubmed]
  16. Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. van Rooijen, R.J., van Schalkwijk, S., de Vos, W.M. J. Biol. Chem. (1991) [Pubmed]
  17. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. Elferink, M.G., de Wit, J.G., Demel, R., Driessen, A.J., Konings, W.N. J. Biol. Chem. (1992) [Pubmed]
  18. Molecular rearrangement of lactose plasmid DNA associated with high-frequency transfer and cell aggregation in Lactococcus lactis 712. Gasson, M.J., Swindell, S., Maeda, S., Dodd, H.M. Mol. Microbiol. (1992) [Pubmed]
  19. tRNATrp as a key element of antitermination in the Lactococcus lactis trp operon. van de Guchte, M., Ehrlich, D.S., Chopin, A. Mol. Microbiol. (1998) [Pubmed]
  20. Acidic residues in the lactococcal multidrug efflux pump LmrP play critical roles in transport of lipophilic cationic compounds. Mazurkiewicz, P., Konings, W.N., Poelarends, G.J. J. Biol. Chem. (2002) [Pubmed]
  21. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Meisel, H., Bockelmann, W. Antonie Van Leeuwenhoek (1999) [Pubmed]
  22. Interaction of the breast cancer resistance protein with plant polyphenols. Cooray, H.C., Janvilisri, T., van Veen, H.W., Hladky, S.B., Barrand, M.A. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  23. Induction of IFN-gamma and IL-1 alpha production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Kitazawa, H., Itoh, T., Tomioka, Y., Mizugaki, M., Yamaguchi, T. Int. J. Food Microbiol. (1996) [Pubmed]
  24. Lactococci as probiotic strains: adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Kimoto, H., Kurisaki, J., Tsuji, N.M., Ohmomo, S., Okamoto, T. Lett. Appl. Microbiol. (1999) [Pubmed]
  25. Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. Janvilisri, T., Venter, H., Shahi, S., Reuter, G., Balakrishnan, L., van Veen, H.W. J. Biol. Chem. (2003) [Pubmed]
  26. Cloning and verification of the Lactococcus lactis pyrG gene and characterization of the gene product, CTP synthase. Wadskov-Hansen, S.L., Willemoës, M., Martinussen, J., Hammer, K., Neuhard, J., Larsen, S. J. Biol. Chem. (2001) [Pubmed]
  27. Novel type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. O'Sullivan, D., Twomey, D.P., Coffey, A., Hill, C., Fitzgerald, G.F., Ross, R.P. Mol. Microbiol. (2000) [Pubmed]
  28. Only one of the two annotated Lactococcus lactis fabG genes encodes a functional beta-ketoacyl-acyl carrier protein reductase. Wang, H., Cronan, J.E. Biochemistry (2004) [Pubmed]
  29. Mucosal delivery of murine interleukin-2 (IL-2) and IL-6 by recombinant strains of Lactococcus lactis coexpressing antigen and cytokine. Steidler, L., Robinson, K., Chamberlain, L., Schofield, K.M., Remaut, E., Le Page, R.W., Wells, J.M. Infect. Immun. (1998) [Pubmed]
  30. Interaction of a group II intron ribonucleoprotein endonuclease with its DNA target site investigated by DNA footprinting and modification interference. Singh, N.N., Lambowitz, A.M. J. Mol. Biol. (2001) [Pubmed]
  31. Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Klijn, N., Weerkamp, A.H., de Vos, W.M. Appl. Environ. Microbiol. (1995) [Pubmed]
  32. Cloning and sequence analysis of putative histidine protein kinases isolated from Lactococcus lactis MG1363. O'Connell-Motherway, M., Fitzgerald, G.F., van Sinderen, D. Appl. Environ. Microbiol. (1997) [Pubmed]
  33. Purification and characterization of dihydroorotate dehydrogenase A from Lactococcus lactis, crystallization and preliminary X-ray diffraction studies of the enzyme. Nielsen, F.S., Rowland, P., Larsen, S., Jensen, K.F. Protein Sci. (1996) [Pubmed]
WikiGenes - Universities