The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells.

The type I insulin-like growth factor receptor (IGF-IR) is known to send two seemingly contradictory signals inducing either cell proliferation or cell differentiation, depending on cell type and/or conditions. H19-7 cells are rat hippocampal neuronal cells immortalized by a temperature-sensitive SV40 large T antigen that grow at 34 degrees C in epidermal growth factor or serum but differentiate at 39 degrees C when induced by basic fibroblast growth factor. At 39 degrees C, expression of the human IGF-IR in H19-7 cells induces an insulin-like growth factor (IGF) I-dependent differentiation. We have investigated the domains of the IGF-IR required for differentiation of H19-7 cells. The tyrosine 950 residue and serines 1280-1283 in the COOH terminus of the receptor are required for IGF-I-induced differentiation at 39 degrees C, although they are dispensable for IGF-I-mediated growth at 34 degrees C. Both domains have to be mutated to inactivate the differentiating function. The inability of these mutant receptors to induce differentiation correlates with mitogen-activated protein kinase activation. In contrast, inhibitors of phosphatidylinositol 3'-kinase have no effect on IGF-I-mediated differentiation of H19-7 cells, although they do inhibit the mitogenic response.[1]


  1. Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Morrione, A., Romano, G., Navarro, M., Reiss, K., Valentinis, B., Dews, M., Eves, E., Rosner, M.R., Baserga, R. Cancer Res. (2000) [Pubmed]
WikiGenes - Universities