The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Distinct Chk2 activation pathways are triggered by genistein and DNA-damaging agents in human melanoma cells.

Genistein, a natural isoflavone found in soybeans, exerts a number of biological actions suggesting that it may have a role in cancer prevention. We have previously shown that it potently inhibits OCM-1 melanoma cell proliferation by inducing a G(2) cell cycle arrest. Here we show that genistein exerts this effect by impairing the Cdc25C-dependent Tyr-15 dephosphorylation of Cdk1, as the overexpression of this phosphatase allows the cells to escape G(2) arrest and enter an abnormal chromatin condensation stage. Caffeine totally overrides the genistein-induced G(2) arrest, whereas the block caused by etoposide is not bypassed and that caused by adriamycin is only partially abolished. We also report that genistein activates the checkpoint kinase Chk2 as efficiently as the two genotoxic agents and that caffeine may counteract the activation of Chk2 by genistein but not by etoposide. In contrast, caffeine abolishes the accumulation of p53 caused by all the compounds. Wortmannin does not suppress the Chk2 activation in any situation, suggesting that the ataxia telangiectasia-mutated kinase is not involved in this regulation. Finally, unlike etoposide and adriamycin, genistein induces only a weak response in terms of DNA damage in OCM-1 cells. Taken together, these results suggest that the G(2) checkpoints activated by genistein and the two genotoxic agents involve different pathways.[1]


  1. Distinct Chk2 activation pathways are triggered by genistein and DNA-damaging agents in human melanoma cells. Darbon, J.M., Penary, M., Escalas, N., Casagrande, F., Goubin-Gramatica, F., Baudouin, C., Ducommun, B. J. Biol. Chem. (2000) [Pubmed]
WikiGenes - Universities