The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Comparative in vitro activities of linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin against erythromycin-susceptible and -resistant streptococci.

The in vitro activities of the new agents linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin were determined and compared with those of penicillin, clindamycin, and four macrolides against 53 erythromycin-resistant Streptococcus pneumoniae, 117 S. pyogenes (64 erythromycin-susceptible and 53 -resistant), and 101 S. agalactiae (53 erythromycin-susceptible and 48 -resistant) isolates. Differentiation of macrolide resistance phenotypes was performed by the double-disk method. The genetic basis for macrolide resistance in 52 strains was also determined. The M phenotype was found in 84.9, 6.3, and 1.9% of S. pyogenes, S. agalactiae, and S. pneumoniae isolates, respectively. These strains were susceptible to miocamycin and clindamycin. Strains with the inducible phenotype accounted for 27.1% of S. agalactiae isolates and 9.4% each of S. pyogenes and S. pneumoniae isolates. All erythromycin-resistant isolates were also resistant to the 14- and 15-membered macrolides tested. Strains with all three phenotypes were susceptible to </=2 microgram of linezolid per ml. Quinupristin-dalfopristin exhibited good in vitro activity against all strains, irrespective of their resistance to erythromycin (MICs at which 90% of the isolates tested were inhibited [MIC(90)s], 0.2 to 1 microgram/ml). Against the erythromycin-resistant S. pyogenes and S. agalactiae strains, moxifloxacin and trovafloxacin were the most active agents (MIC(90)s, 0.1 microgram/ml). The new antimicrobials evaluated may be alternative agents to treat infections caused by macrolide-resistant as well as macrolide-susceptible streptococci.[1]

References

  1. Comparative in vitro activities of linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin against erythromycin-susceptible and -resistant streptococci. Betriu, C., Redondo, M., Palau, M.L., Sánchez, A., Gómez, M., Culebras, E., Boloix, A., Picazo, J.J. Antimicrob. Agents Chemother. (2000) [Pubmed]
 
WikiGenes - Universities