The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Zivoxid     N-[[(5R)-3-(3-fluoro-4- morpholin-4-yl...

Synonyms: AC-901, SureCN5524444, AC1L2JEE, STK634964, ZINC00001622, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of linezolid


Psychiatry related information on linezolid


High impact information on linezolid

  • Introduction of mutant rrl2447T into M. smegmatis rrn- resulted in a linezolid-resistant phenotype, demonstrating a cause-effect relationship of the 2447G --> T alteration [4].
  • In contrast, ribosomes from class II mutants show wild-type susceptibility to a linezolid derivative in vitro, pointing to a non-ribosomal mechanism of resistance [4].
  • Introduction of a wild-type ribosomal RNA operon into linezolid-resistant strains restored linezolid sensitivity in class I mutants, indicating that resistance (i) maps to the rRNA and (ii) is recessive [4].
  • Linezolid and rifampin: Drug interaction contrary to expectations [7]?
  • Examination of the linezolid pharmacokinetics as a function of age revealed that CL increased rapidly during the first week of life and as a function of postnatal age [8].

Chemical compound and disease context of linezolid

  • Improved outcomes with linezolid for methicillin-resistant Staphylococcus aureus infections: better drug or reduced vancomycin susceptibility [9]?
  • The susceptibilities of clinical vancomycin-intermediate Staphylococcus aureus (VISA), heterogeneous VISA, and laboratory-generated linezolid-resistant S. aureus strains to the new oxazolidinone AZD2563 were assessed by agar dilution MIC determination [10].
  • U-100592 and U-100766 are potent oxazolidinones active against antibiotic-susceptible and -resistant gram-positive pathogens in experimental systemic and soft tissue infections [11].
  • The activity of WCK 771 was superior to those of moxifloxacin, vancomycin, and linezolid in a mouse cellulitis model of infection caused by one MSSA and two MRSA strains, with effective doses of 2.5 and 5 mg/kg for the MSSA strain and 10-fold higher effective doses for MRSA strains [12].
  • Comparative efficacies of quinupristin-dalfopristin, linezolid, vancomycin, and ciprofloxacin in treatment, using the antibiotic-lock technique, of experimental catheter-related infection due to Staphylococcus aureus [13].

Biological context of linezolid

  • In addition, three more linezolid-resistant mutants were identified among the previously isolated mutants of H. halobium containing mutations in either 16 S or 23 S rRNA genes [14].
  • Clinical failures of linezolid and implications for the clinical microbiology laboratory [15].
  • Clustering of linezolid-resistance mutations within this region strongly suggests that the binding site of the drug is located in the immediate vicinity of the peptidyl transferase center [14].
  • The use of H. halobium, which possess only one chromosomal copy of rRNA operon, allowed isolation of a number of linezolid-resistance mutations in rRNA [14].
  • Two members of the family, linezolid and XA043, were examined for their effects on translational fidelity using a lacZ reporter gene in vivo [16].

Anatomical context of linezolid


Associations of linezolid with other chemical compounds

  • A new representative of oxazolidinone antibiotics, linezolid, was found to be active against bacteria and against the halophilic archaeon Halobacterium halobium [14].
  • Our results demonstrate that linezolid clearly reduced bacterial numbers in the methicillin-resistant S. aureus hematogenous infection model and significantly improved the survival rate of immunocompromised mice infected with vancomycin-insensitive S. aureus compared with vancomycin and teicoplanin [22].
  • In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones [23].
  • In a randomized crossover study, 12 volunteers (6 males, 6 females) received a single oral dose of 600 mg of linezolid or 500 mg of ciprofloxacin to assess the concentrations in plasma (up to 24 h), urinary excretion (by high-pressure liquid chromatography), and bactericidal titers in urine (UBT) at intervals up to 120 h [21].
  • High concentrations of fluoroquinolones, macrolides, clindamycin, chloramphenicol, rifampin, tetracycline, and linezolid during 48 h of incubation inhibited proliferation and metabolic activity, whereas aminoglycosides and inhibitors of bacterial cell wall synthesis did not [24].

Gene context of linezolid

  • Linezolid is metabolized via morpholine ring oxidation, which is independent of the cytochrome P450 (CYP450) enzyme system; as a result, linezolid is unlikely to interact with medications that stimulate or inhibit CYP450 enzymes [25].
  • Because linezolid also competitively inhibits human monoamine oxidase-A (MAO-A; Ki = 55 microM), we monitored its effects on the cardiovascular responses to tyramine and amine cold remedies in comparison with standard MAO inhibitors [26].
  • Quinupristin/dalfopristin and linezolid show good activity against both mecA-positive and -negative CNS [27].
  • OBJECTIVE: This study used pharmacoeconomic modeling to evaluate the costs and outcomes associated with the use of i.v. vancomycin compared with p.o. linezolid in the treatment of MRSS-infected patients [28].
  • No differences were seen for susceptibility of vanA, vanB1, and vanD VREF strains for daptomycin, linezolid, or QD [29].

Analytical, diagnostic and therapeutic context of linezolid


  1. Linezolid resistance in a clinical isolate of Staphylococcus aureus. Tsiodras, S., Gold, H.S., Sakoulas, G., Eliopoulos, G.M., Wennersten, C., Venkataraman, L., Moellering, R.C., Ferraro, M.J. Lancet (2001) [Pubmed]
  2. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Gonzales, R.D., Schreckenberger, P.C., Graham, M.B., Kelkar, S., DenBesten, K., Quinn, J.P. Lancet (2001) [Pubmed]
  3. Oxazolidinone antibiotics. Diekema, D.J., Jones, R.N. Lancet (2001) [Pubmed]
  4. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Sander, P., Belova, L., Kidan, Y.G., Pfister, P., Mankin, A.S., Böttger, E.C. Mol. Microbiol. (2002) [Pubmed]
  5. Risk factors for anaemia in patients on prolonged linezolid therapy for chronic osteomyelitis: a case-control study. Senneville, E., Legout, L., Valette, M., Yazdanpanah, Y., Giraud, F., Beltrand, E., Obert, G., Dubreuil, L., Migaud, H., Mouton, Y. J. Antimicrob. Chemother. (2004) [Pubmed]
  6. Serotonin toxicity associated with concomitant use of linezolid. Bergeron, L., Boulé, M., Perreault, S. The Annals of pharmacotherapy. (2005) [Pubmed]
  7. Linezolid and rifampin: Drug interaction contrary to expectations? Egle, H., Trittler, R., Kümmerer, K., Lemmen, S.W. Clin. Pharmacol. Ther. (2005) [Pubmed]
  8. Impact of ontogeny on linezolid disposition in neonates and infants. Kearns, G.L., Jungbluth, G.L., Abdel-Rahman, S.M., Hopkins, N.K., Welshman, I.R., Grzebyk, R.P., Bruss, J.B., Van Den Anker, J.N. Clin. Pharmacol. Ther. (2003) [Pubmed]
  9. Improved outcomes with linezolid for methicillin-resistant Staphylococcus aureus infections: better drug or reduced vancomycin susceptibility? Howden, B.P., Charles, P.G., Johnson, P.D., Ward, P.B., Grayson, M.L. Antimicrob. Agents Chemother. (2005) [Pubmed]
  10. Activity of AZD2563, a novel oxazolidinone, against Staphylococcus aureus strains with reduced susceptibility to vancomycin or linezolid. Howe, R.A., Wootton, M., Noel, A.R., Bowker, K.E., Walsh, T.R., MacGowan, A.P. Antimicrob. Agents Chemother. (2003) [Pubmed]
  11. In vivo activities of U-100592 and U-100766, novel oxazolidinone antimicrobial agents, against experimental bacterial infections. Ford, C.W., Hamel, J.C., Wilson, D.M., Moerman, J.K., Stapert, D., Yancey, R.J., Hutchinson, D.K., Barbachyn, M.R., Brickner, S.J. Antimicrob. Agents Chemother. (1996) [Pubmed]
  12. Antistaphylococcal activity of WCK 771, a tricyclic fluoroquinolone, in animal infection models. Patel, M.V., De Souza, N.J., Gupte, S.V., Jafri, M.A., Bhagwat, S.S., Chugh, Y., Khorakiwala, H.F., Jacobs, M.R., Appelbaum, P.C. Antimicrob. Agents Chemother. (2004) [Pubmed]
  13. Comparative efficacies of quinupristin-dalfopristin, linezolid, vancomycin, and ciprofloxacin in treatment, using the antibiotic-lock technique, of experimental catheter-related infection due to Staphylococcus aureus. Giacometti, A., Cirioni, O., Ghiselli, R., Orlando, F., Mocchegiani, F., Silvestri, C., Licci, A., De Fusco, M., Provinciali, M., Saba, V., Scalise, G. Antimicrob. Agents Chemother. (2005) [Pubmed]
  14. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. Kloss, P., Xiong, L., Shinabarger, D.L., Mankin, A.S. J. Mol. Biol. (1999) [Pubmed]
  15. Clinical failures of linezolid and implications for the clinical microbiology laboratory. Potoski, B.A., Mangino, J.E., Goff, D.A. Emerging Infect. Dis. (2002) [Pubmed]
  16. The protein synthesis inhibitors, oxazolidinones and chloramphenicol, cause extensive translational inaccuracy in vivo. Thompson, J., O'Connor, M., Mills, J.A., Dahlberg, A.E. J. Mol. Biol. (2002) [Pubmed]
  17. Cerebrospinal fluid linezolid concentrations in postneurosurgical central nervous system infections. Villani, P., Regazzi, M.B., Marubbi, F., Viale, P., Pagani, L., Cristini, F., Cadeo, B., Carosi, G., Bergomi, R. Antimicrob. Agents Chemother. (2002) [Pubmed]
  18. Uptake and intracellular activity of linezolid in human phagocytes and nonphagocytic cells. Pascual, A., Ballesta, S., García, I., Perea, E.J. Antimicrob. Agents Chemother. (2002) [Pubmed]
  19. Pharmacokinetics of intravenous linezolid in cerebrospinal fluid and plasma in neurointensive care patients with staphylococcal ventriculitis associated with external ventricular drains. Beer, R., Engelhardt, K.W., Pfausler, B., Broessner, G., Helbok, R., Lackner, P., Brenneis, C., Kaehler, S.T., Georgopoulos, A., Schmutzhard, E. Antimicrob. Agents Chemother. (2007) [Pubmed]
  20. Efficacy of linezolid in experimental otitis media. Pelton, S.I., Figueira, M., Albut, R., Stalker, D. Antimicrob. Agents Chemother. (2000) [Pubmed]
  21. Concentrations in plasma, urinary excretion, and bactericidal activity of linezolid (600 milligrams) versus those of ciprofloxacin (500 milligrams) in healthy volunteers receiving a single oral dose. Wagenlehner, F.M., Wydra, S., Onda, H., Kinzig-Schippers, M., Sörgel, F., Naber, K.G. Antimicrob. Agents Chemother. (2003) [Pubmed]
  22. Efficacy of linezolid against methicillin-resistant or vancomycin-insensitive Staphylococcus aureus in a model of hematogenous pulmonary infection. Yanagihara, K., Kaneko, Y., Sawai, T., Miyazaki, Y., Tsukamoto, K., Hirakata, Y., Tomono, K., Kadota, J., Tashiro, T., Murata, I., Kohno, S. Antimicrob. Agents Chemother. (2002) [Pubmed]
  23. In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones. Jones, R.N., Johnson, D.M., Erwin, M.E. Antimicrob. Agents Chemother. (1996) [Pubmed]
  24. Influence on mitochondria and cytotoxicity of different antibiotics administered in high concentrations on primary human osteoblasts and cell lines. Duewelhenke, N., Krut, O., Eysel, P. Antimicrob. Agents Chemother. (2007) [Pubmed]
  25. Linezolid: an oxazolidinone antimicrobial agent. Fung, H.B., Kirschenbaum, H.L., Ojofeitimi, B.O. Clinical therapeutics. (2001) [Pubmed]
  26. Cardiovascular sympathomimetic amine interactions in rats treated with monoamine oxidase inhibitors and the novel oxazolidinone antibiotic linezolid. Humphrey, S.J., Curry, J.T., Turman, C.N., Stryd, R.P. J. Cardiovasc. Pharmacol. (2001) [Pubmed]
  27. In vitro activity of quinupristin/dalfopristin, linezolid, telithromycin and comparator antimicrobial agents against 13 species of coagulase-negative staphylococci. John, M.A., Pletch, C., Hussain, Z. J. Antimicrob. Chemother. (2002) [Pubmed]
  28. Cost analysis of switching from i.v. vancomycin to p.o. linezolid for the management of methicillin-resistant Staphylococcus species. McCollum, M., Rhew, D.C., Parodi, S. Clinical therapeutics. (2003) [Pubmed]
  29. In vitro activities of Daptomycin, Linezolid, and Quinupristin-Dalfopristin against a challenge panel of Staphylococci and Enterococci, including vancomycin-intermediate staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Jevitt, L.A., Smith, A.J., Williams, P.P., Raney, P.M., McGowan, J.E., Tenover, F.C. Microb. Drug Resist. (2003) [Pubmed]
  30. Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Meagher, A.K., Forrest, A., Rayner, C.R., Birmingham, M.C., Schentag, J.J. Antimicrob. Agents Chemother. (2003) [Pubmed]
  31. Intrapulmonary pharmacokinetics of linezolid. Conte, J.E., Golden, J.A., Kipps, J., Zurlinden, E. Antimicrob. Agents Chemother. (2002) [Pubmed]
  32. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. Meka, V.G., Pillai, S.K., Sakoulas, G., Wennersten, C., Venkataraman, L., DeGirolami, P.C., Eliopoulos, G.M., Moellering, R.C., Gold, H.S. J. Infect. Dis. (2004) [Pubmed]
  33. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Stalker, D.J., Jungbluth, G.L. Clinical pharmacokinetics. (2003) [Pubmed]
  34. Serum and cerebrospinal fluid concentrations of linezolid in neurosurgical patients. Myrianthefs, P., Markantonis, S.L., Vlachos, K., Anagnostaki, M., Boutzouka, E., Panidis, D., Baltopoulos, G. Antimicrob. Agents Chemother. (2006) [Pubmed]
WikiGenes - Universities