The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation.

The objective of this study was to profile phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase ( PC) mRNA expression in the liver of dairy cattle during the peripartum transition and determine changes in abundance of these mRNA in response to protein fed during the prepartum period. Thirty-eight multiparous Holstein cows were fed diets containing either 12% crude protein (CP) and 26% rumen undegradable protein (RUP), 16% CP and 26% RUP, 16% CP and 33% RUP, or 16% CP and 40% RUP on a dry-matter basis beginning 28 d before expected calving. After calving, all cows were fed a common diet through 56 d in milk (DIM). Northern analysis of RNA from liver biopsy samples obtained on days -28, -14, +1, +28, and +56 relative to calving indicated that PC and PEPCK mRNA expression were responsive to onset of lactation but not to prepartum protein or RUP concentration. Abundance of PEPCK mRNA was similar at -28, -14, and +1 DIM but was elevated by +28 and +56 DIM relative to precalving levels. Liver PC mRNA abundance was elevated on +1 DIM, remained elevated through 28 DIM, and declined to precalving levels by 56 DIM. The activity of PC enzyme was correlated (r2 = 0.89) with PC mRNA abundance. The data demonstrate increased abundance of PC mRNA during the early transition period followed by increased abundance of PEPCK mRNA during the postpartum period and suggest increased potential metabolism of lactate, pyruvate, and amino acids that contribute to the liver pyruvate pool.[1]


WikiGenes - Universities