The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

lactate     2-hydroxypropanoic acid

Synonyms: lactasol, Polactide, Biolac, Lactovagan, Milchsaure, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of lactic acid

  • L-Lactate was elevated in pouchitis outputs, but differences in stool culture counts, mucosal histology, fecal concentration, assimilation or production of ammonia, nitrogen excretion, pH, and osmolality were not found [1].
  • In the roots of barley and other cereals, hypoxia induces a set of five isozymes of L-lactate dehydrogenase [LDH; (S)-lactate:NADH oxidoreductase, EC] [2].
  • Net cellular L-lactate efflux associated with accelerated anaerobic glycolysis has been implicated as a potential cause of the marked cellular K+ loss contributing to lethal cardiac arrhythmias in ischemic heart and to impaired function of fatigued skeletal muscle [3].
  • To mimic in vivo ischemia, we exposed astrocytes to NaN3 and 0 glucose saline containing L-lactate and glutamate with increased [K+] and decreased [Na+], [Ca2+], and pH [4].
  • Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue [5].
  • In response to hypoglycemia, epinephrine increased 10-fold, and the fractional release of lactate in SM doubled (P < 0.0001) [6].
  • The high lactate levels in small primary 4T1 tumors are associated with intense pimonidazole staining (a hypoxia indicator) [7].

Psychiatry related information on lactic acid


High impact information on lactic acid

  • Serum L-lactate level was normal, but high-resolution proton nuclear magnetic resonance spectrums of the patient's serum showed a high concentration of lactate [13].
  • Further investigation suggested that these CD dimers inhibit the activity of L-lactate dehydrogenase and citrate synthase at least in part by disruption of protein-protein aggregation [14].
  • Under voltage-clamp conditions, no significant electrogenic current was associated with H(+)-coupled L-lactate influx, and membrane potential (-75 to +75 mV) had no effect on the degree of acidification produced by 30 mmol/L [L-]o, indicating that L-lactate influx was predominantly nonelectrogenic [3].
  • To examine the mechanisms of transsarcolemmal L-lactate movement in the heart, isolated guinea pig ventricular myocytes were loaded with the fluorescent H+ or K+ indicators, carboxy SNARF-1 or PBFI, respectively, under whole-cell patch-clamp conditions [3].
  • These results suggest that transcatheter arterial chemoembolization with the use of polylactic acid microspheres containing ACR is a useful tumor-targeting chemotherapy and is effective in the treatment of hepatocellular carcinoma [15].

Chemical compound and disease context of lactic acid

  • The allosteric effect of fructose 1,6-bisphosphate (Fru-1,6-P2) on L-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC from Thermus caldophilus GK24 was studied by means of 1H NMR analyses [16].
  • The role of glycine 99 in L-lactate monooxygenase from Mycobacterium smegmatis [17].
  • A mutant form of L-lactate oxidase (LOX) from Aerococcus viridans in which alanine 95 was replaced by glycine was constructed as a mimic of L-lactate monooxygenase but proved instead to be a mimic of the long chain alpha-hydroxyacid oxidase from rat kidney [18].
  • On modification of arginine residues with 2,3-butanedione, the Thermus caldophilus L-lactate dehydrogenase is converted to an activated form that is independent of an allosteric effector, fructose 1,6-bisphosphate (Fru-1,6-P2) [19].
  • The behavior of this enzyme toward halogeno substrates is therefore similar to that of baker's yeast L-lactate dehydrogenase and in part different from that of Mycobacterium smegmatis lactate oxidase and porcine kidney D-amino-acid oxidase [20].

Biological context of lactic acid

  • The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate [21].
  • The activation energy of L-lactate transport into hepatocytes was 58 kJ mol-1, and measured rates of transport at 37 degrees C were considerably greater than those required for maximal rates of gluconeogenesis [22].
  • We evaluated the effects of unsubstituted and hydroxymonocarboxylic acids on the kinetics of Na+-dependent L-lactate uptake in brush-border membrane vesicles prepared from the whole cortex of rabbit kidney [23].
  • Amino acid sequence analysis of two tryptic fragments of the purified material showed greater than 95% homology with sequences 179-194 and 319-328 of the M chain of human L-lactate dehydrogenase [24].
  • L-lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence, and primary structure homology within an enzyme family [25].

Anatomical context of lactic acid


Associations of lactic acid with other chemical compounds


Gene context of lactic acid


Analytical, diagnostic and therapeutic context of lactic acid


  1. Short-chain fatty acids in pouch contents from patients with and without pouchitis after ileal pouch-anal anastomosis. Clausen, M.R., Tvede, M., Mortensen, P.B. Gastroenterology (1992) [Pubmed]
  2. Hypoxically inducible barley lactate dehydrogenase: cDNA cloning and molecular analysis. Hondred, D., Hanson, A.D. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  3. Lactate transport in mammalian ventricle. General properties and relation to K+ fluxes. Shieh, R.C., Goldhaber, J.I., Stuart, J.S., Weiss, J.N. Circ. Res. (1994) [Pubmed]
  4. Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes. Rose, C.R., Waxman, S.G., Ransom, B.R. J. Neurosci. (1998) [Pubmed]
  5. Studies on the mechanism of Mycobacterium smegmatis L-lactate oxidase. 5-Deazaflavin mononucleotide as a coenzyme analogue. Averill, B.A., Schonbrunn, A., Abeles, R.H. J. Biol. Chem. (1975) [Pubmed]
  6. Catecholamine regulation of local lactate production in vivo in skeletal muscle and adipose tissue: role of -adrenoreceptor subtypes. Qvisth, V., Hagström-Toft, E., Enoksson, S., Bolinder, J. J. Clin. Endocrinol. Metab. (2008) [Pubmed]
  7. Metabolic Imaging: A Link between Lactate Dehydrogenase A, Lactate, and Tumor Phenotype. Serganova, I., Rizwan, A., Ni, X., Thakur, S.B., Vider, J., Russell, J., Blasberg, R., Koutcher, J.A. Clin. Cancer Res. (2011) [Pubmed]
  8. Cerebral blood flow changes during sodium-lactate-induced panic attacks. Stewart, R.S., Devous, M.D., Rush, A.J., Lane, L., Bonte, F.J. The American journal of psychiatry. (1988) [Pubmed]
  9. Thin-film microbiosensors for glucose-lactate monitoring. Jobst, G., Moser, I., Varahram, M., Svasek, P., Aschauer, E., Trajanoski, Z., Wach, P., Kotanko, P., Skrabal, F., Urban, G. Anal. Chem. (1996) [Pubmed]
  10. L-lactate uptake by rat liver. Effect of food deprivation and substrate availability. Felipe, A., Remesar, X., Pastor-Anglada, M. Biochem. J. (1991) [Pubmed]
  11. Expansion and fixation properties of a new braided biodegradable urethral stent: an experimental study in the rabbit. Vaajanen, A., Nuutinen, J.P., Isotalo, T., Törmälä, P., Tammela, T.L., Talja, M. J. Urol. (2003) [Pubmed]
  12. Use of polylactic acid implants to correct facial lipoatrophy in human immunodeficiency virus 1-positive individuals receiving combination antiretroviral therapy. Cattelan, A.M., Bauer, U., Trevenzoli, M., Sasset, L., Campostrini, S., Facchin, C., Pagiaro, E., Gerzeli, S., Cadrobbi, P., Chiarelli, A. Archives of dermatology. (2006) [Pubmed]
  13. D-Lactic acidosis after jejunoileal bypass: identification of organic anions by nuclear magnetic resonance spectroscopy. Traube, M., Bock, J.L., Boyer, J.L. Ann. Intern. Med. (1983) [Pubmed]
  14. Selective disruption of protein aggregation by cyclodextrin dimers. Leung, D.K., Yang, Z., Breslow, R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  15. Transcatheter arterial chemoembolization therapy for hepatocellular carcinoma using polylactic acid microspheres containing aclarubicin hydrochloride. Ichihara, T., Sakamoto, K., Mori, K., Akagi, M. Cancer Res. (1989) [Pubmed]
  16. Allosteric effect of fructose 1,6-bisphosphate on the conformation of NAD+ as bound to L-lactate dehydrogenase from Thermus caldophilus GK24. Machida, M., Yokoyama, S., Matsuzawa, H., Miyazawa, T., Ohta, T. J. Biol. Chem. (1985) [Pubmed]
  17. The role of glycine 99 in L-lactate monooxygenase from Mycobacterium smegmatis. Sun, W., Williams, C.H., Massey, V. J. Biol. Chem. (1997) [Pubmed]
  18. Conversion of L-lactate oxidase to a long chain alpha-hydroxyacid oxidase by site-directed mutagenesis of alanine 95 to glycine. Yorita, K., Aki, K., Ohkuma-Soyejima, T., Kokubo, T., Misaki, H., Massey, V. J. Biol. Chem. (1996) [Pubmed]
  19. Conformation of NAD+ bound to allosteric L-lactate dehydrogenase activated by chemical modification. Koide, S., Yokoyama, S., Matsuzawa, H., Miyazawa, T., Ohta, T. J. Biol. Chem. (1989) [Pubmed]
  20. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker's yeast. Urban, P., Chirat, I., Lederer, F. Biochemistry (1988) [Pubmed]
  21. Occurrence of the malate-aspartate shuttle in various tumor types. Greenhouse, W.V., Lehninger, A.L. Cancer Res. (1976) [Pubmed]
  22. The kinetics, substrate, and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator, 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. Jackson, V.N., Halestrap, A.P. J. Biol. Chem. (1996) [Pubmed]
  23. Evidence for distinct pathways in rabbit renal brush-border membrane vesicles for the transport of unsubstituted and alpha-hydroxysubstituted aliphatic monocarboxylic acids. Barbarat, B., Podevin, R.A. J. Biol. Chem. (1987) [Pubmed]
  24. A 36-kilodalton tumor-derived factor with myeloid immunomodulatory activity. Packard, B.Z., Komoriya, A. J. Biol. Chem. (1993) [Pubmed]
  25. L-lactate 2-monooxygenase from Mycobacterium smegmatis. Cloning, nucleotide sequence, and primary structure homology within an enzyme family. Giegel, D.A., Williams, C.H., Massey, V. J. Biol. Chem. (1990) [Pubmed]
  26. A rabbit erythrocyte membrane protein associated with L-lactate transport. Jennings, M.L., Adams-Lackey, M. J. Biol. Chem. (1982) [Pubmed]
  27. L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. Welch, S.G., Metcalfe, H.K., Monson, J.P., Cohen, R.D., Henderson, R.M., Iles, R.A. J. Biol. Chem. (1984) [Pubmed]
  28. Demonstration of organic anion transport in T lymphocytes. L-lactate and fluo-3 are target molecules. Sommer, F., Bischof, S., Röllinghoff, M., Lohoff, M. J. Immunol. (1994) [Pubmed]
  29. In vivo portal-hepatic venous gradients of glycogenic precursors and incorporation of D-[3-3H]glucose into liver glycogen in the awake rat. Dobson, G.P., Veech, R.L., Passonneau, J.V., Huang, M.T. J. Biol. Chem. (1990) [Pubmed]
  30. Active site probes of flavoproteins. Determination of the solvent accessibility of the flavin position 8 for a series of flavoproteins. Schopfer, L.M., Massey, V., Claiborne, A. J. Biol. Chem. (1981) [Pubmed]
  31. Stoichiometry of the renal sodium-L-lactate cotransporter. Barbarat, B., Podevin, R.A. J. Biol. Chem. (1988) [Pubmed]
  32. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter. Cranmer, S.L., Conant, A.R., Gutteridge, W.E., Halestrap, A.P. J. Biol. Chem. (1995) [Pubmed]
  33. Role of pyruvate kinase in the regulation of gluconeogenesis from L-lactate. Rognstad, R., Katz, J. J. Biol. Chem. (1977) [Pubmed]
  34. Membrane-bound lactate dehydrogenases and mandelate dehydrogenases of Acinetobacter calcoaceticus. Purification and properties. Allison, N., O'Donnell, M.J., Fewson, C.A. Biochem. J. (1985) [Pubmed]
  35. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Hunt, T.K., Aslam, R.S., Beckert, S., Wagner, S., Ghani, Q.P., Hussain, M.Z., Roy, S., Sen, C.K. Antioxid. Redox Signal. (2007) [Pubmed]
  36. Serial in vivo spectroscopic nuclear magnetic resonance imaging of lactate and extracellular pH in rat gliomas shows redistribution of protons away from sites of glycolysis. Provent, P., Benito, M., Hiba, B., Farion, R., López-Larrubia, P., Ballesteros, P., Rémy, C., Segebarth, C., Cerdán, S., Coles, J.A., García-Martín, M.L. Cancer Res. (2007) [Pubmed]
  37. Stimulation of lactate production in human granulosa cells by metformin and potential involvement of adenosine 5' monophosphate-activated protein kinase. Richardson, M.C., Ingamells, S., Simonis, C.D., Cameron, I.T., Sreekumar, R., Vijendren, A., Sellahewa, L., Coakley, S., Byrne, C.D. J. Clin. Endocrinol. Metab. (2009) [Pubmed]
  38. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors. Zhang, M., White, T.A., Schuermann, J.P., Baban, B.A., Becker, D.F., Tanner, J.J. Biochemistry (2004) [Pubmed]
  39. Isolation of the DLD gene of Saccharomyces cerevisiae encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase. Lodi, T., Ferrero, I. Mol. Gen. Genet. (1993) [Pubmed]
  40. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production. Ishida, N., Saitoh, S., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Takahashi, H. Biosci. Biotechnol. Biochem. (2006) [Pubmed]
  41. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. Ritzhaupt, A., Wood, I.S., Ellis, A., Hosie, K.B., Shirazi-Beechey, S.P. J. Physiol. (Lond.) (1998) [Pubmed]
  42. Cloning of a Neisseria meningitidis gene for L-lactate dehydrogenase (L-LDH): evidence for a second meningococcal L-LDH with different regulation. Erwin, A.L., Gotschlich, E.C. J. Bacteriol. (1996) [Pubmed]
  43. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., Renner, K., Timischl, B., Mackensen, A., Kunz-Schughart, L., Andreesen, R., Krause, S.W., Kreutz, M. Blood (2007) [Pubmed]
  44. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. Sonveaux, P., Végran, F., Schroeder, T., Wergin, M.C., Verrax, J., Rabbani, Z.N., De Saedeleer, C.J., Kennedy, K.M., Diepart, C., Jordan, B.F., Kelley, M.J., Gallez, B., Wahl, M.L., Feron, O., Dewhirst, M.W. J. Clin. Invest. (2008) [Pubmed]
  45. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. Liu, C., Wu, J., Zhu, J., Kuei, C., Yu, J., Shelton, J., Sutton, S.W., Li, X., Yun, S.J., Mirzadegan, T., Mazur, C., Kamme, F., Lovenberg, T.W. J. Biol. Chem. (2009) [Pubmed]
  46. Evidence for a lactate-anion exchanger in the rat jejunal basolateral membrane. Cheeseman, C.I., Shariff, S., O'Neill, D. Gastroenterology (1994) [Pubmed]
  47. Studies on the active center of D- and L-lactate dehydrogenases using oxamate-diaminohexyl-Sepharose affinity chromatography. Tuengler, P., Stein, T.N., Long, G.L. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  48. Local lactate perfusion of the ventromedial hypothalamus suppresses hypoglycemic counterregulation. Borg, M.A., Tamborlane, W.V., Shulman, G.I., Sherwin, R.S. Diabetes (2003) [Pubmed]
  49. Crystallization and preliminary crystallographic analysis at low resolution of the allosteric L-lactate dehydrogenase from Lactobacillus casei. Buehner, M., Hecht, H.J., Hensel, R., Mayr, U. J. Mol. Biol. (1982) [Pubmed]
WikiGenes - Universities