Chromatographic determination of riboflavin and its derivatives in food.
Three elution methods on two different reversed-phase C18 columns were developed to determine flavin derivatives in raw egg white, raw egg yolk, egg powder, pasteurised milk, fermented milk products and liver (chicken, calf and pig). Additionally, 11 thin-layer chromatography solvent systems were used to confirm presence of flavins detected in assessed products. It was found that an Alphabond C18 column was not as effective as a Symmetry C18 column. Method A (mobile phase gradient of methanol-0.05 M ammonium acetate, pH 6.0 applied on an Alphabond C18 column) can be used for determination of flavin adenine dinucleotide, flavin mononucleotide, riboflavin 4',5'-cyclic phosphate, riboflavin, 10-formylmethylflavin and 10-hydroxyethylflavin in products that do not contain 7alpha-hydroxyriboflavin. Method B (mobile phase gradient of methanol-demineralized water, on an Alphabond C18 column) can be useful to separate flavin coenzymes from other flavin compounds or to confirm the presence of 7alpha-hydroxyriboflavin and 10-hydroxyethylflavin in analysed samples. Method C (mobile phase gradient of methanol-0.05 M ammonium acetate, pH 6.0, on a Symmetry C18 column) allows separation of all flavins detected in tested products: flavin adenine dinucleotide, flavin mononucleotide, riboflavin 4',5'-cyclic phosphate, riboflavin, 10-formylmethylflavin, 10-hydroxyethylflavin, 7alpha-hydroxyriboflavin, riboflavin-beta-D-galactoside and riboflavin-alpha-D-glucoside.[1]References
- Chromatographic determination of riboflavin and its derivatives in food. Gliszczyńska-Swigło, A., Koziołowa, A. Journal of chromatography. A. (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg