The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Flavine     10-methylacridine-3,6-diamine

Synonyms: Panflavin, Acriflavin, Flavacridine, Flavacridinum, Triphaflavine, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Acriflavine

  • Finally, A beta-induced H2O2 production and A beta toxicity are blocked by reagents that inhibit flavin oxidases, suggesting that A beta activates a member of this class of enzymes [1].
  • We have studied the mechanism of photoactivation (light-induced reduction of the flavin adenine dinucleotide cofactor) of Escherichia coli DNA photolyase using time-resolved absorption spectroscopy [2].
  • Furthermore, ex vivo examination of cultures proved the presence of Helicobacter pylori and the active uptake of acriflavine into the bacteria [3].
  • Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency [4].
  • The native flavin, FMN, has been removed from the l-lactate oxidase of Aerococcus viridans, and the apoprotein reconstituted with 12 FMN derivatives with various substituents at the flavin 6- and 8-positions [5].

Psychiatry related information on Acriflavine

  • Exciting the semiquinone form of the flavin produces two transient EPR signals: a fast signal that is limited by the time response of the instrument and a slower signal with a lifetime of approximately 6 ms [6].

High impact information on Acriflavine

  • One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain [7].
  • Cryptochromes are flavin-containing blue light photoreceptors related to photolyases-they are found in both plants and animals and have recently been described for bacteria [8].
  • We positionally cloned FKF1, which encodes a novel protein with a PAS domain similar to the flavin-binding region of certain photoreceptors, an F box characteristic of proteins that direct ubiquitin-mediated degradation, and six kelch repeats predicted to fold into a beta propeller [9].
  • Irradiation with blue light relieves this repression, presumably through an intra- or intermolecular redox reaction mediated through the flavin bound to the N-terminal photolyase-like domain [10].
  • Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome [11].

Chemical compound and disease context of Acriflavine


Biological context of Acriflavine


Anatomical context of Acriflavine


Associations of Acriflavine with other chemical compounds


Gene context of Acriflavine

  • Phototropin 1 (phot1) is a Ser/Thr photoreceptor kinase that binds two molecules of flavin mononucleotide as its chromophores and undergoes autophosphorylation in response to blue light [32].
  • In addition to its tetrapyrrole clearance role in the fetus, BVR-B has flavin and ferric reductase activities in the adult [33].
  • Cryptochrome is a group of flavin-type blue light receptors that regulate plant growth and development [34].
  • It is caused by loss-of-function mutations in FMO3 encoding flavin-containing mono-oxygenase 3 [35].
  • Genetic evidence has confirmed that the flavin nucleotide imbalance of G178 mutants is caused by mutations in FLX1 [36].

Analytical, diagnostic and therapeutic context of Acriflavine


  1. Hydrogen peroxide mediates amyloid beta protein toxicity. Behl, C., Davis, J.B., Lesley, R., Schubert, D. Cell (1994) [Pubmed]
  2. Intraprotein radical transfer during photoactivation of DNA photolyase. Aubert, C., Vos, M.H., Mathis, P., Eker, A.P., Brettel, K. Nature (2000) [Pubmed]
  3. Diagnosing Helicobacter pylori in vivo by confocal laser endoscopy. Kiesslich, R., Goetz, M., Burg, J., Stolte, M., Siegel, E., Maeurer, M.J., Thomas, S., Strand, D., Galle, P.R., Neurath, M.F. Gastroenterology (2005) [Pubmed]
  4. Photoreception in Neurospora crassa: correlation of reduced light sensitivity with flavin deficiency. Paietta, J., Sargent, M.L. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  5. On the interpretation of quantitative structure-function activity relationship data for lactate oxidase. Yorita, K., Misaki, H., Palfey, B.A., Massey, V. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  6. Origin of the transient electron paramagnetic resonance signals in DNA photolyase. Gindt, Y.M., Vollenbroek, E., Westphal, K., Sackett, H., Sancar, A., Babcock, G.T. Biochemistry (1999) [Pubmed]
  7. Function and structure of complex II of the respiratory chain. Cecchini, G. Annu. Rev. Biochem. (2003) [Pubmed]
  8. Cryptochromes: enabling plants and animals to determine circadian time. Cashmore, A.R. Cell (2003) [Pubmed]
  9. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A., Bartel, B. Cell (2000) [Pubmed]
  10. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R. Cell (2000) [Pubmed]
  11. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Dolphin, C.T., Janmohamed, A., Smith, R.L., Shephard, E.A., Phillips, I.R. Nat. Genet. (1997) [Pubmed]
  12. Theoretical investigation of the [1,2]-sigmatropic hydrogen migration in the mechanism of oxidation of 2-aminobenzoyl-CoA by 2-aminobenzoyl-CoA monooxygenase/reductase. Torres, R.A., Bruice, T.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  13. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. Kobori, T., Sasaki, H., Lee, W.C., Zenno, S., Saigo, K., Murphy, M.E., Tanokura, M. J. Biol. Chem. (2001) [Pubmed]
  14. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase. Louie, T.M., Yang, H., Karnchanaphanurach, P., Xie, X.S., Xun, L. J. Biol. Chem. (2002) [Pubmed]
  15. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. Gaudu, P., Touati, D., Nivière, V., Fontecave, M. J. Biol. Chem. (1994) [Pubmed]
  16. Interactions of pyridine nucleotides with redox forms of the flavin-containing NADH peroxidase from Streptococcus faecalis. Poole, L.B., Claiborne, A. J. Biol. Chem. (1986) [Pubmed]
  17. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Ahmad, M., Cashmore, A.R. Nature (1993) [Pubmed]
  18. The mobile flavin of 4-OH benzoate hydroxylase. Gatti, D.L., Palfey, B.A., Lah, M.S., Entsch, B., Massey, V., Ballou, D.P., Ludwig, M.L. Science (1994) [Pubmed]
  19. Flavin-linked peroxide reductases: protein-sulfenic acids and the oxidative stress response. Claiborne, A., Ross, R.P., Parsonage, D. Trends Biochem. Sci. (1992) [Pubmed]
  20. Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide. Pinto, J., Huang, Y.P., Rivlin, R.S. J. Clin. Invest. (1987) [Pubmed]
  21. Purification, characterization, and cDNA cloning of an NADPH-cytochrome P450 reductase from mung bean. Shet, M.S., Sathasivan, K., Arlotto, M.A., Mehdy, M.C., Estabrook, R.W. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  22. Flavin adenine dinucleotide--dependent monooxygenase: its role in the sulfoxidation of pesticides in mammals. Hajjar, N.P., Hodgson, E. Science (1980) [Pubmed]
  23. Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Rotrosen, D., Yeung, C.L., Leto, T.L., Malech, H.L., Kwong, C.H. Science (1992) [Pubmed]
  24. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Davies, J.P., Chen, F.W., Ioannou, Y.A. Science (2000) [Pubmed]
  25. Cytochrome b deficiency in an autosomal form of chronic granulomatous disease. A third form of chronic granulomatous disease recognized by monocyte hybridization. Weening, R.S., Corbeel, L., de Boer, M., Lutter, R., van Zwieten, R., Hamers, M.N., Roos, D. J. Clin. Invest. (1985) [Pubmed]
  26. Is the flavin-deficient red blood cell common in Maremma, Italy, an important defense against malaria in this area? Anderson, B.B., Scattoni, M., Perry, G.M., Galvan, P., Giuberti, M., Buonocore, G., Vullo, C. Am. J. Hum. Genet. (1994) [Pubmed]
  27. X-ray structures of two oxidation states of a flavin-nicotinamide biscoenzyme and models for flavin--nicotinamide interactions. Porter, D.J., Bright, H.J., Voet, D. Nature (1977) [Pubmed]
  28. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Cheng, Y., Dai, X., Zhao, Y. Genes Dev. (2006) [Pubmed]
  29. Structure-function aspects in the nitric oxide synthases. Stuehr, D.J. Annu. Rev. Pharmacol. Toxicol. (1997) [Pubmed]
  30. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. Nishida, K., Harrison, D.G., Navas, J.P., Fisher, A.A., Dockery, S.P., Uematsu, M., Nerem, R.M., Alexander, R.W., Murphy, T.J. J. Clin. Invest. (1992) [Pubmed]
  31. Renalase is a novel, soluble monoamine oxidase that regulates cardiac function and blood pressure. Xu, J., Li, G., Wang, P., Velazquez, H., Yao, X., Li, Y., Wu, Y., Peixoto, A., Crowley, S., Desir, G.V. J. Clin. Invest. (2005) [Pubmed]
  32. Cellular and subcellular localization of phototropin 1. Sakamoto, K., Briggs, W.R. Plant Cell (2002) [Pubmed]
  33. Structure of human biliverdin IXbeta reductase, an early fetal bilirubin IXbeta producing enzyme. Pereira, P.J., Macedo-Ribeiro, S., Párraga, A., Pérez-Luque, R., Cunningham, O., Darcy, K., Mantle, T.J., Coll, M. Nat. Struct. Biol. (2001) [Pubmed]
  34. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., Cashmore, A.R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  35. A nonsense mutation in the FMO3 gene underlies fishy off-flavor in cow's milk. Lundén, A., Marklund, S., Gustafsson, V., Andersson, L. Genome Res. (2002) [Pubmed]
  36. FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. Tzagoloff, A., Jang, J., Glerum, D.M., Wu, M. J. Biol. Chem. (1996) [Pubmed]
  37. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Kussmaul, L., Hirst, J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  38. Time-resolved EPR studies with DNA photolyase: excited-state FADH0 abstracts an electron from Trp-306 to generate FADH-, the catalytically active form of the cofactor. Kim, S.T., Sancar, A., Essenmacher, C., Babcock, G.T. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  39. Electrically monitoring DNA repair by photolyase. DeRosa, M.C., Sancar, A., Barton, J.K. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  40. Bacterial luciferase. Binding of oxidized flavin mononucleotide. Baldwin, T.O., Nicoli, M.Z., Becvar, J.E., Hastings, J.W. J. Biol. Chem. (1975) [Pubmed]
WikiGenes - Universities