The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The conformation of the T-antigen disaccharide bound to Maclura pomifera agglutinin in aqueous solution.

The complex of Maclura pomifera agglutinin with the T-antigen disaccharide (beta-d-Gal-(1-->3)-alpha-d-GalNAc-(1-->O)-Me) was investigated by NMR spectroscopy in aqueous solution. Intramolecular transferred nuclear Overhauser enhancement (NOE) effects between the monosaccharide moieties were used to derive the ligand conformation in the lectin-bound state. Ligand protons in contact with the protein were identified by saturation transfer difference experiments and intermolecular transferred NOE effects. It is demonstrated that structural differences exist for the ligand-lectin complex in aqueous solution as compared with the previously published crystal structure (Lee, X., Thompson, A., Zhiming, Z., Ton-that, H., Biesterfeldt, J., Ogata, C., Xu, L., Johnston, R. A. Z. , and Young, N. M. (1998) J. Biol. Chem. 273, 6312-6318). In order to accommodate the O-methyl group of the disaccharide, the amino acid side chain of Tyr-122 has to rotate from its position in the crystal. The NMR data are in accord with two conformational families at the beta-(1-->3)glycosidic linkage in the solution complex with interglycosidic angles phi/psi = 45/-65 degrees and -65/-18 degrees. These differ from the bound conformation of the ligand in the crystal (phi/psi = 39/-8 degrees ) and are not highly populated by the ligand in the free state. The reason for the structural differences at the beta-(1-->3)glycosidic linkage are hydrogen bonds that stabilize the relative orientation of the monosaccharide units in the crystal. Our results demonstrate that the crystallization of a protein-carbohydrate complex can interfere with the delicate process of carbohydrate recognition in solution.[1]

References

 
WikiGenes - Universities